
TP 10 : récursivité PTSI 2025/2026

Script 1 : calcul des termes d’une suite récurrente Niveau : 1

On considère une suite récurrente définie par son premier terme u0 puis pour tout entier naturel n par :

un+1 = f(un)

où f est une fonction définie sur R (pour simplifier).

1. Écrire une fonction python suite_iter itérative qui prend en argument une fonction f, un flottant u0 et un
entier n et renvoie une valeur approchée du terme d’indice n de la suite u définie comme ci-dessus.

2. Écrire une fonction suite_recur(f,u0,n) effectuant la même tâche.

3. Effectuer à la main la suite d’appels de votre fonction dans le cas f : x 7→ 2x + 1, u0 = 3 et n = 2 en la
représentant sous forme arborescente puis faire la remontée de cette pile d’appel pour calculer le résultat.

4. Faire un comparatif de temps d’exécution n valant 100.

Script 2 : fonction mystère Niveau : 2

SANS LA FAIRE exécuter par Python, dire ce que fait la fonction suivante.

def dk(L1,L2=[]):
if L1 == []:

return L2
else:

s = L1.pop(0)
if s not in L2:

L2.append(s)
return dk(L1,L2)

Script 3 : dichotomie Niveau : 2

On rappelle l’algorithme de dichotomie pour la résolution approchée d’une équation f(x) = 0 où :

▶ f est continue sur l’intervalle [a, b]

▶ f(a) et f(b) sont de signe différents.

Algorithme de dichotomie :
On construit par récurrence deux suites de valeurs (an)n, (bn)n qui encadre une solution α de l’équation

f(x) = 0

▶ a0 = a, b0 = b.

▶ Pour n ∈ N :

▷ On considère cn =
an + bn

2
▷ si f(cn) et f(an) sont de signes différents :

an+1 = an , bn+1 = cn

▷ sinon
an+1 = cn , bn+1 = bn

1. Quel théorème mathématique permet d’affirmer qu’il y a toujours une solution à l’équation f(x) = 0 entre an
et bn ?

2. f une fonction Python prenant en entrée un flottant x et renvoyant un flottant qu’on suppose définie préala-
blement. (voir squelette).
Programmer une fonction itérative, dicho_iter prenant en argument une fonction python f, deux flottants
a,b, et une précision p et qui renvoie une valeurs approchée d’une solution de f(x)=0 en utilisant l’algo-
rithme de dichotomie.

3. Programmer une version récursive de cette fonction : dicho_recur.

4. Effectuer un test de temps pour comparer les deux fonctions.

Script 4 : tri rapide Niveau : 3

L’algorithme de tri rapide pour une liste L de nombre est un algorithme dans lequel on procède comme
ci-dessous pour créer une version triée par ordre croissant de la liste L :

▶ on choisit au hasard un indice : ind (dans les indices possibles pour la liste L)

▶ On créé deux listes L1 et L2 de la manière suivante :

▷ L1 contient toutes les valeurs de L qui sont inférieures ou égales à L[ind]
▷ L2 contient toutes les valeurs de L qui sont strictement supérieures à L[ind]

▶ On relance l’algorithme sur les deux listes et on concatène le résultat.

1. Écrire une fonction partition qui prend en entrée une liste L et un indice ind et renvoie les deux listes L1
et L2 décrites ci-dessus.

2. En déduire une fonction tri_rapide d’argument une liste de nombres L et renvoyant une version triée de L
par l’algorithme précédent.

3. Faire des comparaison de temps d’exécution avec :

a. avec une fonction de tri utilisant l’algorithme de tri par insertion ou par sélection.
b. avec la fonction de tri sort native en Python.

Script 5 : exponentiation rapide Niveau : 2

Pour calculer an lorsque a est un nombre réel et n un entier naturel non nul, on peut adopter la méthode
suivante :

▶ Si n est pair on calcul (an/2)2

▶ sinon on calcule a× an−1

1. Écrire une fonction python récursive qui utilise l’idée précédente pour effectuer le calcul de an (sans utiliser
bien sûr la l’opération ** de Python).

2. Introduire dans cette fonction un compteur permettant de déterminer le nombre d’appels fait par la fonction
à elle même.

