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1 Introduction

Ce chapitre est la premiere partie des deux chapitres sur I'intégration dans le programme
de PTSI. Il se veut pratique et calculatoire, dans le but de résoudre des équations différentielles
simples et de faire du calcul intégral.

Nous allons relier calcul de primitives et d’intégrales, travailler des techniques de calcul comme
I'intégration par parties et le changement de variables.

Puis, nous résoudrons les équations différentielles linéaires du premier et second ordre.

Les équations différentielles apparaissent fréquemment en physique, car elles modélisent de
nombreuses situations dans toutes les sciences.

Il s’agit d’un type d’équation dont les inconnues ne sont plus des nombres mais des fonctions.

REMARQUE 1 — Dans ce chapitre, I désignera un intervalle ouvert (I =]a, f3[).
Les résultats obtenus pourront s’étendre auz fonctions a valeurs dans C (f : I — C, fonctions
a valeurs complexes), sauf si le contraire est précisé.

Pour une fonction définie sur un intervalle et a valeurs dans C, la dérivabilité se définit
comme ceci :

DEFINITION 2

Soit I un intervalle. Soit f : I — C une fonction telle que t — Re(f(t)) et t — TJm(f(t)) sont
dérivables sur I.

Alors f est dérivable sur I, et pour toutt € I on a :

F1(t) = Re(f (1)) + iTm(f(t))

!

s N

-\@’-Application a la Physique

Electrocinétique
Dans un dipole RC en régime sinusoidal dont un générateur impose aux bornes du dipole
une tension e(t) = E cos(wt + ¢).

On obtient que la tension dans le systeme est donnée en fonction du temps par
Eeivt

u(t) = —————.

(*) 14+ jRCw

Remarque : En physique on utilise la lettre j pour désigner le nombre compleze i, la
lettre i étant réservée pour des intensités (courant électrique, intensité lumineuse).

2 Primitives d’une fonction définie sur un intervalle a valeurs com-
plexes

2.1 Définitions

DEFINITION 3 (Primitive)
Soient I un intervalle de R et f: I — C une fonction.
On appelle primitive de f une fonction F : I — C dérivable, telle que F' = f.

fRisque d’erreur

| Une primitive n’est pas unique, on ne parlera donc pas de la primitive mais d’une pri-
mitive.
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En effet, les fonctions constantes x — 1 et x — 3 sont deux primitives distinctes de la
fonction nulle © — 0.

EXEMPLE 4 —

e La fonction x + cos(x) — x est une primitive de x — — sin(z) — 1.
n n—1

x
e Pour tout n € N*, z — — est une primitive de x — ——
n! (n—1)!

o x — —ie' est une primitive de x — e'*.

2.2 Ensemble des primitives d’une fonction sur un intervalle

Lorsque une primitive existe on sait qu’elle n’est pas unique.
On décrit ici ’ensemble des primitives d’une fonction f, dans le cas ou f admet une primitive.

PROPOSITION 5
Soit f: I — C qui admet primitive Fy : I — C.
Alors, les primitives de f sur I sont toutes de la forme x — Fy(x) + k, avec k € C.

Si la fonction f est a valeurs réelles, les primitives (4 valeurs réelles) sont définies a une
constante réelle pres.

EXEMPLE 6 — L’ensemble des primitives réelles de f : x + % — 1 est

4
{xH%—x%—k\keR}.

3 Primitives des fonctions usuelles

3.1 Tableau de primitives classiques

Le tableau suivant est réciproque a celui des dérivées. Il permet de calculer directement un
grand nombre d’intégrales.

Fonction f Primitive F Intervalle [
x +— a (constante non nulle) T — ar R
$n+1
= a"(n>1) T R
I n+1
T — 0 (n>1) T _7(71—1;:5”*1 ] — 00; 0] ou]0; 400
«@ -1 zotl R*
T (a17é ) T T i
1
T p Inx R%
x e’ x> e” R
x — In(z) x— xln(x) —x R%
x +— ch(z) x +— sh(x) R
x +— sh(x) x +— ch(x) R
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Fonction f Primitive F Intervalle [
x > sin(z) x — — cos(x) R
x > cos(x) x + sin(x) R
x> x +— arctan(z) R
1 —1—1562
T — T — arcsin(x —1;1
G — T — arcos(x —1;1
Nz (=) =
v tan(z) | 2+ —In(jcos(z)]) | | -5 +km 5 +kn[, k€ Z

3.2 Primitive d’un produit exponentielle - fonction trigonométrique

PROPOSITION 7 \
X

e
Soit A € C*. Alors, © — ~ est une primitive de x — e*. (Cf. Complexes)

PROPOSITION 8
Soit f : I — C, une fonction admettant une primitive F : I — C.
Alors Re(F) et Im(F) sont des primitives de Re(f) et Im(f).
On peut appliquer le résultat précédent pour rechercher des primitives de fonctions réelles :

METHODE 9 (Déterminer une primitive de z — € cos(bx) ou = — e sin(bx))

1. On pose A = a +ib et f(x) = e = €% cos(bx) + i sin(bx).
Az
2. On sait que F : x — ~ est une primitive de f.

3. On calcule la partie réelle et imaginaire de F, et on obtient ainsi une primitive pour
x +— e cos(bx) et x — e sin(bx).

cos(z) — sin(x)

EXEMPLE 10 — z — €* X ( 5

) est une primitive de x — €* cos(x).

EXERCICE 1 — Déterminer une primitive de x +— e*® cos(3z) et de x + €2 sin(3z).

1
3.3 Primitivesde r — —————
ar? + bxr + ¢
1
On déterminer les primitives des fonctions de la forme x — ———— pour a,b,c € R.
ax? 4+ br + ¢

Cela nécessite plusieurs cas.

On distingue d’abord par un cas plus simple (le cas a = 0).

a l'aide de

Pour b # 0, on sait calculer les primitives des fonctions de la forme z — T
T+ ¢
la fonction logarithme.

PROPOSITION 11
frR\{F) — R

Soient b,c e R, b# 0, et
r +——

br + ¢

In (|
Alors, une primitive de f est F(z) = n(|al:)+c|)

Démonstration — Sur feuille. On dérive F'.
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PROPOSITION 12
fr R\{Z} — R

Soient a,b € R avec a # 0, et .

(azx + b)? '

—1 1
Alors une primitive de f est F(zr) = — X .

a ar +b
Démonstration — On dérive F' pour vérifier que F' = f.

PRroPoOSITION 13
f+ R — R
Soient a,b € R avec a # 0, et 1 )
T —
(ax +b)?+1

Alors une primitive de f est F': x — — X arctan(ax + b). Démonstration — On dérive F.
a

Avec les primitives précédentes, on peut obtenir une primitive de toutes les fonctions de la

forme —5————— Cela est indiqué dans la méthode suivante :
ax®+bx +c
METHODE 14
1
Soienta#+0etbceRetf:2—~ ———.
7 / ax? +bx + ¢

En fonction du signe du discriminant de ax® + bx + ¢, il y a 3 cas différents de primitives.
1. Si A=0b*—4ac>0, on a x1,x2 € R tels que ax® +bx +c = a(x — x1)(x — 22).
Q@
+ 5 .
xr — X Xr — I9
On développe l’expression de droite pour trouver les valeurs de « et (.

1
(a) Alors, il existe o, 5 € R tels que f(x) = . X

(b) Une primitive de f est alors :

a
P In(|z — x1|) + g X In(|z — x3|)

2. 8i A =0, alors il existe z9 € R tel que f(x) = a(x — x0)?.
Une primitive de f est alors :

3. Si A <0, alors il existe o, 3,7 € R tels que ax?® +bx +c = a(Bx + )% +1).
On développe 'expression de droite pour trouver les valeurs o, 3,7.
Une primitive de f est alors :

F(z) = alﬂ x arctan(fx + 7).

EXERCICE 2 — Déterminer une primitive des fonctions suivantes :
1
1. T
h 2 — 31 + 2
1
2. fo x> ————
f2 22 — 4z + 4
3. f > !
. T
7 22+ +1

4 Existence de primitives

Venons-en au théoreme central sur les primitives.
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4.1 Théoreme fondamental de I’analyse

THEOREME 15 (Théoréme fondamental de P’analyse)

Soit I un intervalle. Soit f une fonction continue sur I, et a € I.
Alors, la fonction F :x € I — [* f(t)dt € R est dérivable sur I,
et sa dérivée est la fonction f (F' = f).

Autrement dit, la fonction x — fax f(t)dt est une primitive de f.
Démonstration —Admis. (Pour l’instant)

Pour une fonction f & valeurs complexes, on applique le théoréme précédent & Re(f) et a
Im(f). En effet, avec les propriétés de I'intégrale (linéarité de l'intégrale), on a :

b b b
/f(t)dt:/ Re(f(t))dt+/ Im(f(t))dt

REMARQUE 16 — La primitive F' : x € I — faz f(t)dt donnée dans le théoréme fondamental
est l'unique primitive de f qui s’annule en a (F(a) =0).

NOTATION 17

€T
Pour f une fonction continue, la notation / f(t)dt désigne une primitive générique de f.

On en déduit ainsi I'outil fondamental du calcul intégral, que vous avez déja rencontré en
classe de terminale.

THEOREME 18 (Théoréme de Newton-Leibniz)
Soit I un intervalle. Soit f une fonction continue sur I, et F' une primitive de f sur I.
Alors, pour tous a,b € I on a :

b
/ f(t)dt = F(b) — F(a).

DEFINITION 19
On note [F(t)]° = F(b) — F(a).

EXEMPLE 20 — On sait que f : x +— cos(xz) — x est continue sur [0, 7] et admet pour primitive
x
F:zw—sin(x) — —.
D’aprés le théoreme de Newton-Leibniz, on a alors :
2 02 2

| 10 = 10 = (sinte) - ) — (sino) - T) = -
0

OR
Le théoreme de Newton-Leibniz indique que déterminer une primitive et calculer une in-
tégrale sont les deux faces d’'une méme piece. Si I’on connait la valeur des intégrales, alors on
connait la primitive. Et si 'on connait la primitive, alors on connait la valeur des intégrales.
Lorsque 'on vous demande de calculer une intégrale, I'une des méthodes pour y arriver est de
chercher une primitive de la fonction a intégrer.
Cependant, il n’est pas toujours possible de déterminer une primitive d’une fonction f don-
née. (Ex : Il est impossible d’exprimer une primitive de x +— exp(2?) uniquement & I’aide des
fonctions usuelles (comme un produit, somme, composée, quotient de fonctions usuelles).

4.2 Fonction de classe C*

Dans le théoreme fondamental de ’analyse, on a considéré une primitive F' d’une fonction
f continue. La fonction F' est une fonction dérivable dont la dérivée est continue.
Ce type de fonction est tres utile en analyse. Ce sont les fonctions de "classe C'17.
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DEFINITION 21 (Fonctions de classe C!)

Soient I un intervalle et f: I — C.

On dit que f est de classe C' sur I si elle est dérivable sur I et si sa dérivée f' est continue
sur I.

On note C*(I) l’ensemble des fonctions de classe C' sur I

EXEMPLE 22 — Soit I =] —1,1].

1. La fonction f:x +— 2% +x + 1 est de classe C' sur I.
1 .
2)six#0

. est continue sur I, mais n’est pas
0stx=0

2. Par contre, la fonction g : © — { x sin(

de classe C1 sur I.
Elle est par contre de classe C* sur]0,1].

PROPOSITION 23
Soient I un intervalle et f,g € C*(I). Alors :
e La somme f + g est de classe C' sur I.
Le produit f x g est de classe C* sur I.
e Pour tous A\, ;n € R, \.f + p.g est de classe C' sur I.

e Si g ne s’annule pas sur I, le quotient — est de classe C* sur I.
g

e Pour h:J — I de classe C', la composée f o h est de classe C'.
Démonstration — On utilise les formules de dérivation d’une somme,produit,quotient,composée,
et les propriétés des fonctions continues.

THEOREME 24 (Linéarité de 'intégrale)
Soient A\, u € R et f,g des fonctions continues sur I. Alors, pour tous a,b €1 on a :

b b b
/ )\.f(t)—l—u.g(t)dt:)\./ f(t)dt+u./ g(t)dt

Démonstration — On utilise le théoréme de Newton-Leibniz, et les propriétés de la dérivée de
sommes/multiples.

Grace au théoreme de Newton-Leibniz, on relie sans soucis dérivée et intégration :

PROPOSITION 25
Soit f une fonction de classe C' sur I. Alors, pour tous a,b € I on a :

b
F(b) — fla) = / o

Démonstration — Sur feuille.

Arctan(z)

est de classe C1 sur R.
2 +1

EXERCICE 3 — Montrer que F : x

Calculer sa dériée.

5 Techniques de calculs

5.1 Formules de dérivations

Pour pouvoir facilement reconnaitre une primitive d’une fonction f que ’on souhaite inté-
grer , on peut utiliser les formules suivantes de dérivations :
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foewr ()

/
/S 2\/ /In 1 n+1 ' /o uaJrl
2u'u = (u®) vu = | ——u wu® = (a # —1)

n+1

U/
— = (Inful)’ u'e" = (e")
u

EXERCICE 4 — Soit f la fonction définie sur RY. par f(x) =
Déterminer une primitive de f.

5.2 Intégration par parties

Une deuxieme méthode pour s’aider a calculer des intégrales est I'intégration par parties.
Cela permet de transformer U'intégrale, en utilisant la formule (uv) = v'v + uv'.

THEOREME 26 (IPP)
Soient I un intervalle et u,v € C' de classe C'.
Alors, pour tous réels a,b € I, on a :

I
<
—~
~
S~—
<
—~
~
Pt
Q o
|
Q\

S8
:\
—~
~+~
~—
<
—~
~
N—
IS
~

b
/ (B (1)t

Démonstration — Sur feuille.

EXEMPLE 27 — Déterminons a l’aide d’une intégration par partie la valeur de In(t)dt.

On pose pour cela u(t) = In(t) et v'(t) = 1, on a donc pour tout t € [1,¢], u'(t) =
primitive de v’ est donnée par v(t) = t.

Les fonction u et v sont bien de classe C' sur [1,¢].

D’apres la formule d’intégration par parties on obtient :

€ . € 1 B € B B
/Iln(t)dt:[tln(t)]l—/l txtdt—e—/l ldt—c—(e—1)=1.

METHODE 28
Pour calculer une intégrale par intégration par parties (IPP) :

1. On détermine les fonctions u et v qui interviennent et on vérifie qu’elles sont de classe
C! sur Uintervalle considéré.

2. On calcule lintégrale ff o' (t)v(t)dt, qui doit étre plus facile & calculer que lintégrale
initiale.
Si ce nest pas le cas, alors lintégration par parties que l’on a faite n’aide pas.

3. On applique la formule d’intégration par parties.

EXERCICE 5 — Calculer les intégrales suivantes a ’aide d’une intégration par parties :
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1 e
1. / tetdt. 2. / In(z)dx.
0 1

EXERCICE 6 — Déterminer, a l’aide d’une intégration par parties, une primitive de arctan.

5.3 Changement de variables

Une autre technique pour calculer des primitives/intégrales est le changement de variables.
Cela se base sur la formule (uov)" =v".u/ ow.

THEOREME 29
Soient f une fonction continue sur [a;b], et u une fonction C* sur [a; B8], telle que u(la; B]) C

[a; b]. Alors, on a :
B u(B)
/ Flu()u' (t)dt :/ f(z)dzx
a u(a)

Effectuer un changement de variables sur l'intégrale f; f(t)dt consiste a remplacer la va-
riable ¢ par une nouvelle variable wu.
La premiere intégrale est alors égale a une deuxieme intégrale.
Et, si la variable u est bien choisie, la deuxieme intégrale est plus simple a calculer.
Cette variable u s’exprime en fonction de ¢ (ex : u = cos(t), u = t2, u = exp(t)).
Dans l'intégrale, il faut ensuite remplacer les 3 éléments qui dépendent de ¢t :

1. Les bornes a, b.
2. La fonction intégrée f(t).
3. La variable d’intégration dt.

Voyons cela sur des exemples.

EXEMPLE 30 — Calculer fl In(t)2dt.

1. On pose u = In(t).
La fonction In est bien définie sur [1,2], dérivable, de dérivée continue.
Elle est bien de classe C' sur [1,2].

2. Onau=1In(t) & t=exp(u).
En différenciant, on obtient : du = %dt et dt = exp(u)du.

Quandt =1 on au=1In(l) =0, et quand t =2 on a u = In(2).
On a In(t)? = u?.

On obtient donc, par changement de variables : ff In(t)2dt = fo )2 exp(u)du.

S vt

Une primitive de la fonction u — u®exp(u) est u — exp(u)(u® — Ju + 1).
Ainsi, on a f12 In(t)%dt = ln( )42 exp(u)du = [exp(u)(u? — Fu+ %)]}{‘(2) = 2(In(2)% —
@) 4 1y _1.00-0+1).

1
EXEMPLE 31 — Pour calculer /2 V1 —t2dt :
0

e On peut poser le changement de variables t = sin(u).
En effet, on asin de classe C' sur [0,%] et sin([0, F]) = [0, 3] et dt = cos(u)du.

e Par la formule de changement de variables, on obtient que :

us

/05 V1—t2dt = /Og /1 — sin(u)2 cos(u)du = /06 cos(u)2du
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1+ cos(2u)

5 , dont une primitive est u +—

e En linéarisant cos®(u), on obtient cos?(u)

u | sin(2u)

2 4
e On obtient la valeur de l’intégrale initiale :

0

4 o 12 24

METHODE 32
Soit [ = fab f(t)dt. Pour effectuer un changement de variables :
e On pose x = u(t) ou u est une fonction de classe C' sur [a;b)].
Cela donne dx = u/(t)dt, ainsi que t = v~ (z) et dt = (u=')(x)dx.
e On utilise ces relations pour remplacer f(t) et dt dans l'intégrale par des termes en x
et dx.
e Enfin, on s’occupe des bornes. Quandt = a on a x = u(a), et quandt =b on a x = u(b).

On a alors ff f(t)dt = fu“((;)) g(z)dz.
L objectif est que cette seconde intégrale soit a priori plus simple a calculer.

Si ce nest pas le cas, alors le changement de variables choisi n’aide pas.

Uin(1 +€?) . :
EXERCICE 7 — Clalculer I = ———=dt en effectuant le changement de variables x =

Jo 1+€7t
1+el.

6 Equations différentielles linéaires

Maintenant que nous avons des outils pour le calcul de primitives et d’intégrales, nous allons
étudier les équations différentielles linéaires d’ordre 1 et 2. Commencons par définir cela.

DEFINITION 33
Soit I un intervalle. Soient a,b,c: I — R des fonctions continues.
Une équation différentielle (sur I) est une équation ot l'inconnue est une fonction y.
Cette fonction y peut étre a valeurs réelles (y : I — R) ou parfois a valeurs complexes (y : I —
C).
Les familles d’équations différentielles que nous étudierons sont :
e /' (2) +a(x)y(z) = b(x), équation différentielle linéaire d’ordre 1 (EDL1);
e ' (z) + a(x)y(x) = 0, équation différentielle linéaire d’ordre 1 homogéne (EDL1 ho-
mogeéne) ;
e /() +a(x)y (x) +bx)y(x) = c(x), équation différentielle linéaire d’ordre 2 (EDL2) ;
e y'(z) + a(x)y'(x) + b(z)y(x) = 0, équation différentielle linéaire d’ordre 2 homogéne
(EDL2 homogéne).
Dans certains cas, les fonctions a (ou a,b) seront constantes. On parle alors d’équations &
coefficients constants.
Une EDL homogéne est une équation différentielle dont le terme de droite vaut 0.

EXEMPLE 34 —
— y('z) + 2zy(xz) = 0 est une EDL1 homogéne (sur I =R).
La fonction x — e~ est une solution.
— '(z) + Ly(z) = 3 est une EDL1 (sur I =)0, +oc[ ou sur ] — oo,0[).
— y/(x) — 2y(x) = x est une EDLI, & coefficients constants (sur I =R).
La fonction x — % est une solution.
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— y"(z) + y(x) = 0 est une EDL2 homogéne, a coefficients constants (sur I =R).
Les fonctions cos et sin sont des solutions.
— y(x) — e"y/(x) + 3cos(x)y(z) = In(z) est une EDL2 (sur I =]0,+oc]).
— y"(z) — 2y (x) 4+ 3y(z) = In(z) est une EDL2, a coefficients constants (sur I =]0,+o0|).

REMARQUE 35 — Les solutions d’une EDL1 doivent étre des fonctions dérivables. (il faut que
y' existe)
Les solutions d’une EDL2 doivent étre des fonctions deux fois dérivables. (il faut que y',y”
existent).

Pour certaines équations différentielles, il est possible de trouver avec quelques calculs une
solution. Par exemple, la fonction nulle (x +— 0) est toujours une solution des EDL homogenes.
L’objectif de ce chapitre est de résoudre des EDL, c’est-a-dire trouver toutes leurs solutions.
Nous étudierons de méme certaines propriétés des équations différentielles et de leurs ensembles
de solutions.

7 Equations différentielles linéaires du premier ordre

7.1 Définitions

PRroPOSITION 36
Soit I un intervalle.
L’ensemble des solutions de l’équation différentielle (£) : y'(z) = 0 sur I est S = {x € I —
C, C e R}.
Autrement dit, pour y une fonction dérivable, sa dérivée y' est la fonction si et seulement siy
est une fonction constante.

Ce résultat, que nous avons en fait déja vu avec les propriétés des intégrales, est le premier
élément qui permet de résoudre des EDL.

EXEMPLE 37 — L’équation (£) : y' —y = x est une équation différentielle linéaire du premier
ordre (EDL1). Sur I =R, ses solutions sont exactement les fonctions de la forme x — k.e® —
xz—1, pour k € R.

DEFINITION 38 (Equation homogéne associée)
Soit (£): y(x) + a(z)y(x) = b(x) une équation différentielle linéaire du premier ordre.
On appelle équation homogéne associée a (£) VEDL1 (&,): y/'(z) + a(x)y(z) = 0.

7.2 Résolution d’une équation homogene

Une équation différentielle homogene admet toujours la fonction nulle comme solution.
On s’intéresse ici a déterminer ’ensemble de toutes les solutions d’une équation différentielle
homogene.

Nous allons nous servir de la fonction exponentielle et des primitives pour décrire la forme des
solutions en général.

EXEMPLE 39 — (Résolution des EDL1 homogénes & coefficients constants) Pour aborder
la résolution générale des EDL1 homogénes, traitons d’abord le cas particulier a coefficients
constants.

C’est-a-dire lorsque équation est de la forme (£):  y'(z) + ay(x) =0, pour un a € R.

Nous allons raisonner en deuz temps.
On remarque d’abord que pour tout x € R, on a (e —ae”
On obtient (e~ ) + a.e” = —ae” % 4+ a.e”* =0, donc x — e~ est solution de l’équation

70,2?)/ — ax

10
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&).

Soit maintenant, f : R — R une solution de ’équation différentielle (£).
On posey : x € R f(x)e, définie sur R et dérivable comme produit de fonctions dérivables.
Alors, pour tout tout x € R, on obtient :

v (2) = f(2).e" + f(x).(ae™) = —a.f(x)e™ + a.f(x)e™ = 0.

D’aprés une Proposition précédente, on en déduit que y est constante sur R.
Ainsi, il existe un k € R tel que f: x +— k.e .

Conclusion : L’ensemble des solutions de l’équation (£) est S = {x — k.e”* | k € R}.

THEOREME 40 (Solutions d’une EDL1 homogene)
Soit T un intervalle. Soit (&) :  y'(x) + a(x)y(z) =0 une EDL1 homogéne sur I. Alors :

1. 1l existe fo une solution de (&) qui n’est pas la fonction nulle.
2. La fonction fy ne s’annule pas sur I. (Vx € I, fo(xz) #0)

3. L’ensemble des solutions de (&) est
So={\fo| A e R}

4. Soit A: I — R une primitive de la fonction a.
Alors, la fonction x — exp(—A(z)) est une solution de (&), qui ne s’annule pas.

Démonstration — Sur feuille.

METHODE 41 (Résoudre une EDL1 homogéne)
Soit (&) 1 y'(x) + a(x)y(z) = 0 une EDLI homogéne, sur un intervalle I. Résolvons-la.

1. On détermine A : I — R une primitive de a.
2. On pose fo: x> e A,
3. L’ensemble des solutions Sy de (&) est Sop = {\.fo | A € R}.

EXERCICE 8 — Résoudre les équations différentielles suivantes.
On précisera l’ensemble de définition de a, et lintervalle sur lequel on résout I’EDL.
1. y' + cos(x)y =0

1
2.y — ——y=0
Yy ﬁ—ny
1
3.y + n(m).y:(]
x

Maintenant que ’on sait résoudre les EDL1 homogenes, résolvons les EDL1. Pour cela, nous
avons besoin de deux outils en plus.

7.3 Principe de superposition

THEOREME 42 (Principe de superposition)

Soit I un intervalle. Soient a,by,ba : I — R des fonctions continues. On pose (E1) : y'+a(zx)y =
bi(x) et (E2) :y + a(x)y = ba(x) des EDLI.

Soient f1, fo des solutions de (E1) et (E2).

Alors, f1+ fa est une solution de UEDL1 (E1 + E2) : y' + a(x)y = b1(z) + ba(z).
Démonstration — On vérifie que fi1 + fa est une solution de ’EDLI.

11
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METHODE 43

Quand la fonction b dans le second membre (le terme de droite) est compliquée, on la dé-
compose en une somme de fonctions plus simples : b=1by + ...+ by.

Ensuite, pour chaque i € {1,...,n}, on trouve f; une solutzon a ’EDL1 dont le second membre
est b;.

Enfin, d’apres le principe de superposition, la fonction f = f1 + ...+ f, est une solution de

UEDL1 ' (z) 4+ a(z)y(x) = b(x).

EXEMPLE 44 — Pour trouver une solution a (E) : y'(x)+y(z) = z+cos(z)+e**, on cherche une
solution a (E1) : y'(z) + y(z) = z,(F2) : ¥'(z) + y(z) = cos(x), et (E3) : ¥'(z) +y(z) = **.

En tatonnant on trouve que fi(x) = x — 1, fa(z) = w et f3(x) = 1e*® sont des
solutions de (El) (E2), (E3).
Done, f(x) =2 —1+ w + €27 est une solution de (E).

REMARQUE 45 — Fait important : Nous allons utiliser le principe de superposition avec f =
f+0.

EXEMPLE 46 — Soit (E) : y/'(z) + y(z) = . C’est une EDL1 sur I =R.

Son équation homogeéne associée est (Ep) : y'(z) + y(z) = 0.

Or, on connait toutes les solutions de (Fy) : ce sont les fonctions de la forme x — ke™™, avec
ke R.

On a aussi vu que fo(x) = x — 1 est une solution de (E).

D’apres le principe de superposition, on en déduit que toutes les fonctions de la forme x —
ke ™ +x —1, k € R, sont des solutions de (E).

7.4 Plan de résolution d’une équation différentielle

Pour résoudre une EDLI1 nous allons utiliser le principe de superposition : une solution de
I’EDL1 s’écrit comme la somme d’une solution de 'EDL1 homogene associée et d’une solution
particuliere de I’équation.

THEOREME 47

Soit () :  o/(z) + a(z)y(z) =
Notons (Eo) sy (x) + a(z)y(x
solutions de (EO).

b(x) une EDL1 sur un intervalle I.
) = 0 son équation homogéne associée, et Sy l’ensemble des

1. L’équation (€) posséde au moins une solution f,.

2. L’ensemble des solutions de U'EDL (€) est S ={f, + f, f € So}.
Les solutions de I’EDL (£) sont toutes les fontions qui s’écrivent comme la somme d’une
solution f, de (£) et d’une solution de son EDL homogéne associée (Ep).

3. Pour A : I — R une primitive de a, on a ainsi S = {x + f,(z) + ke™4®) k € R}.

Démonstration — Sur feuille. On combine les résultats précédents (existence d’une solution par-
ticuliére, linéarité, solutions de l’équation homogéne associée).

Ainsi, si 'on sait trouver une solution & une EDL1 (F), on peut trouver toutes ses solutions
grace au théoréeme précédent.

METHODE 48 (Résolution d’une EDL1)
Soit (€)1 y'(x) + a(x)y(x) = b(x) une EDLI, sur un intervalle I. Résolvons cette EDL.

1. On pose (&) : ¢'(x)+ a(z)y(xz) = 0 I’équation homogéne associée a (E), et on résout
cette EDL.
Pour A : I — R une primitive de a, les solutions de (&) sont les x +— ke=A@) e R.

12
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2. On trouve f, : I — R une solution de (£).
Cette solution est appelée solution particuliére.
1l existe pour cela plusieurs méthodes.
e On peut tenter de chercher une “solution évidente” (une solution qui a une expression
simple). (Trés rapide, pas toujours utilisable)
e Si la fonction b a une forme précise, on peut chercher une solution particuliere f, avec
une certaine forme (Rapide, pas toujours utilisable).
e Si la fonction b s’écrit comme une somme de plusieurs fonctions plus simples, on
peut utiliser le principe de superposition pour chercher une solution particuliére. (Pra-
tique, souvent utilisable) ® Ou bien, on utilise la méthode de variation de la constante.
(Toujours utilisable)

3. L’ensemble des solutions de (E) s’écrit :

S ={fy+ f, f solution de (Eg)} = {x — fy(x) + ke 2@ k€ R}.

7.5 Méthode de la variation de la constante

Le dernier outil pour résoudre les EDL1 dont nous avons besoin est la méthode de variation
de la constante. Son nom est un peu paradoxal, mais cette méthode permet de toujours trouver
une solution particuliere & une EDLI1. Elle est tres efficace.

THEOREME 49 (Méthode de variation de la constante)

Soit (€)' (z)+a(z)y(x) = b(x) une EDLI sur un intervalle I. Soit A : I — R une primitive
de a.

e On cherche une solution particulicre f, de (E) de la forme f,(x) = C(z)e™4@®), avec O : I —
R une fonction dérivable (qu’il faudra trouver).

e On obtient f,(z) + a(z)fp(z) = C'(z)e=A@),

e Si f, est une solution de ((£), on a alors C'(x) = b(x)eA®).

e En prenant pour C' une primitive de x — b(x)e®) | la fonction f,(x) = C(x)e @) est bien
une solution particuliére de (£).

Démonstration — Sur feuille.

EXEMPLE 50 — A l’aide de la méthode de variation de la constante déterminons une solution
particuliere de 'équation (E): ' (z) +z.y(x) = x.

Les fonctions a(x) = z et b(x) = x sont continues sur R. On va résoudre ’EDL sur I = R.
2

x
e La fonction A : x — 5 est une primitive de a.

x

»

e Soit C': R — R une fonction dérivable. On pose f, : x — C(x)e
On veut faire en sorte que f, soit une solution particuliére de (E).
o Pour tout x € R, on a

nN

T z2 x x

@) +x.fp(x) = C'(x)e” 7 + C(x).(—z.e”2) +2.C(x)e” 2 =C'(z)e” 7.

N
[

e La fonction f, est une solution de (E) si et seulement si pour tout v € R, C'(z) =
2

x x
b(x)ez =xez.
22
On recherche une primitive de x +— x.e 2. Comme cette fonction est de la forme

u'exp(u), on lui trouve facilement une primitive.

On pose alors C(z) = e .

(S

e On obtient que fp:x 1= €T x e T est une solution particuliére de (E).
Et, avec le théoréme précédent, on obtient que les solutions de (E) sont exactement les

fonctions de la forme x +— 1+ kexp(%), avec k € R.

13
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REMARQUE 51 — Dans l’exemple, on pouvait déterminer f, de facon bien plus rapide (c’était
une “solution évidente”). 1l y a parfois des solutions particuliéres trés simples pour des équations
différentielles, et les trouver nécessite de la pratique.

7.6 Les EDL1 en sciences

/’Applicatz’on a la ST
Les EDL d’ordre 1 représentent de nombreuses situations en sciences physiques ou indus-
trielles.

1 Alt
FElles prennent en général la forme y'(z) + —y(z) = L), ot
T T
e y est une grandeur qui évolue au cours du temps.
e T est une constante de la dimension du temps appelée temps caractéristique.
A .
e — modeélise une action extérieure sur le systeme appelée en général consigne et

i
est constante ou sinusoidale. On dit que le régime est libre si A = 0 et forcé
SInon.

EXERCICE 9 — Soit v la vitesse d’un corps de masse m en chute libre verticale dans un champ
de pesanteur d’intensité g.
Supposons que le corps est soumis a une force de frottement de I’air proportionnelle a sa vitesse

f = —av. L’équation qui régit ’évolution de v est :
dv
m— = —auv —
dt g

1. Déterminer le temps caractéristique et la consigne de cette équation.

2. Déterminer une expression de la vitesse du corps en fonction du temps.

7.7 Probleme de Cauchy

Nous avons vu qu’une équation différentielle du premier ordre admettait toujours au moins
une solution. Un probléme de Cauchy est une équation différentielle a laquelle on ajoute des
conditions initiales sur les solutions.

Cela qui arrive souvent en pratique en Physique ou Sciences de l'ingénieur (ex : définir la
position initiale d’un objet, sa vitesse initiale).
Dans le cas d’un probleme de Cauchy d’ordre 1, la solution est unique.

THEOREME 52 (Solution au probléme de Cauchy)
Soient I un intervalle et a,b: I — R deux fonctions continues sur I. Soient xg € I et yg € R.
Alors, il existe une unique solution f au probleme de Cauchy :

©€): ¢ +al@)y=>bz) et f(zo)=1y0.

Démonstration — Sur feuille.

EXERCICE 10 — Déterminer l'unique solution au probleme de Cauchy suivant :
C:y+2y=0 y(1)=4.

THEOREME 53

Tous les résultats obtenus pour les EDL1 a coefficients réels sont valables pour les EDL1 a

coefficients complezes (ot on cherche f: 1 — C)
Cela termine étude des EDL1. Passons aux EDL2.
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8 Equations différentielles linéaires du second ordre a coefficients constants

Les principales différences entre EDL1 et EDL2 se situent au niveau de la résolution des
équations homogenes.

REMARQUE 54 — Nous allons étudier et résoudre les EDL2 a coefficients constants.
C’est-a-dire, les EDL de la forme (€) : y"(z)+a.y'(z)+b.y(x) = ¢(x) avec a,b € R constants et
c: I — R une fonction continue. Le cas des EDL2 générales n’est pas au programme de PTSI.
1l sera abordé en deuxieme année.

EXEMPLE 55 — L’équation y"(z) + v'(z) — y(z) = tan est une EDL2 d coefficients constants.
On peut rechercher ses solutions sur lintervalle I =] — 3, 3.

On commence par résoudre les EDL2 homogenes a coefficients constants.

8.1 Résolution des équations homogenes

Nous allons pour cela avoir besoin d’un outil, I’équation caractéristique.

DEFINITION 56 (Equation caractéristique)
Soit (&) : y"(z) + a.y/(z) + b.y(x) = 0 une EDL2 homogeéne a coefficients constants.
On appelle équation caractéristique associée a (£y) 'équation du second degré :

2 +ar+b=0
L’introduction de cette équation se justifie par la proposition suivante :

PROPOSITION 57

Soit (&) : y'(x) + a.y/(x) + b.y(xz) = 0 une EDL2 homogéne a coefficients constants, et r € C.
Alors, la fonction x — €™ est solution de (£y) si et seulement si r est solution de l’équation
caractéristique > + ax 4+ b = 0.

Démonstration — Sur feuille. On utilise les dérivées de © +— €e"™.

On commence par résoudre les EDL2 homogenes a coefficients complexes, car les solutions
s’écrivent beaucoup plus simplement. On résoudra ensuite les EDL2 homogenes a coefficients
réels.

ProposITION 58 (EDL2 homogeénes a coefficients complexes)

Soit (&) : y"(z) + a.y/(z) + b.y(x) = 0 une EDL2 homogéne, d coefficients constants, qui sont
complexes (a,b e C).

Soit 2% + ax + b = 0 son équation caractéristique.

1. Si son équation caractéristique a deux racines distinctes r1,ro € C, alors les solutions
de (&) sont toutes les fonctions de la forme :

T = A1.e® + A€ avec A\, \g € C.

2. Si son équation caractéristique a une racine double ro € C, alors les solutions de de (&)
sont toutes les fonctions de la forme :

x> €A + Aa.x), avec A, Mg € C.

Démonstration — Sur feuille.

EXEMPLE 59 — L’équation (E) : y"(z) + y(x) = 0 est une EDL2 homogéne d coeffs constants.
Résolvons-la dans C. Son équation caractéristique associée est > +1 =0, qui a pour racines
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1 et —i.
Donc, l'ensemble des solutions de (E) est S = {x + A\1e™ + X ae™ A1, Ay € C}. On a exprimé
les solutions valeurs dans C de cette EDL. Ses solutions dans R s’écrivent différemment.

Traitons maintenant le cas des solutions a valeurs réelles, qui s’exprime un peu moins
simplement que dans C.

PROPOSITION 60

Soit (&) : ¥"(x) + a.y/(x) + b.y(x) = 0 une EDL2 homogéne a coefficients constants, avec
a,beR.

Soit 2% + ax + b = 0 son équation caractéristique.

1. Si son équation caractéristique a deux racines réelles distinctes r1,r79 € R, alors les
solutions de (Ey) sont toutes les fonctions de la forme :

T = A1.e® + Xa.e™* avec A\, \g € R.

2. Si son équation caractéristique a une racine double ro € R, alors les solutions de (Ey)
sont toutes les fonctions de la forme :

x = (A + Aa.x), avec A, Ay € R.

3. Si son équation caractérique a deux racines complexes conjuguées r1 = a+1ib,ro = a—1b,
alors l’ensemble des solutions de de (&) est l’ensemble des fonctions de la forme :

z = e"" (A cos(bx) + Az2sin(bx)), avec A1, A2 € R.

Démonstration — Sur feuille.

EXERCICE 11 — Résoudre les équations différentielles homogénes suivantes :

1. y"(z) + 49/ (z) — 5y(xz) =0 3. y"(x) + 2y (z) + 2y(x) =0
2. y"(x) =2y (z) + y(x) =0

8.2 Solution particuliere

On résoud les EDL2 avec la méme idée que les EDL1 : On trouve les solutions de 'EDL
homogene associée, et on trouve une solution particuliere.
Mais, trouver une solution particuliere d’une EDL2 n’est pas aussi simple que pour les EDL1.
Il existe une méthode de la variation de la constante pour les EDL2, mais elle est plus compli-
quée et n’est pas au programme.

Dans ce chapitre, on se restreint donc a déterminer des solutions particulieres d’EDL2 quand
le second membre ¢ : x — ¢(z) est de la forme :
o 2+ AeM avec A, \ € C des complexes.
e z+— Bcos(wz) ou x — Bsin(wz), avec B,w € R des réels.

METHODE 61 (Recherche d’une solution particuliére pour certaines EDL2)

Soit (E) une EDL d’ordre 2 de la forme y"(z) + ay'(z) + by(x) = Ae*®, avec A, )\ € C des
complexes.

Pour déterminer une solution particuliére f de cette équation, on distingue 3 cas.

1. Si \ n'est pas solution de l’équation caractéristique x> + ax +b =0, on cherche f de la
forme f: x> a.e™.
On détermine la valeur de o € C en remplagant cette expression dans l’équation (E).
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2. Si X\ est une racine simple de l’équation caractéristique x> + ax +b = 0, on cherche f
de la forme f : x — a.ze®.
On détermine la valeur de oo € C en remplacant f dans l’équation (E).

3. Si X\ est une racine double de l’équation caractéristique x> + ax +b = 0, on cherche f
de la forme f : x — a.x?e™.

On détermine la valeur de oo € C en remplacant f dans l’équation (E).

Démonstration — Sur feuille.

METHODE 62 (Recherche d’une solution particuliere pour certaines EDL2)
Soit (E) une EDL d’ordre 2 de la forme (E) : y"(x) + ay'(z) + by(z) = Bcos(wz) ou y"(x) +
ay'(x) + by(z) = Bsin(wz), avec B,w € R des réels.
Pour déterminer une solution particuliére f de cette équation :
1. On détermine une solution particuliére f, de ’EDL a coeffs complezes y"(x) + ay/ (x) +
by(z) = Ber.
2. La fonction f : x — Re(fp(x)) est une solution particuliére de (E) : y"(x) + ay'(z) +
by(z) = B cos(wz).

3. La fonction f : x — Im(fy(z)) est une solution particuliére de (E) : y"(z) + ay'(x) +
by(z) = Bsin(wz).

EXERCICE 12 — Déterminer une solution particuliere aux équations différentielles :

1. y" — 3y + 2y = 3e” 3. y" — 3y’ + 2y = cos(x)
2.y =3y +2y=—be ?

Le principe de superposition est aussi valable pour les EDL2, ce qui permet de trouver une
solution particuliere (et de résoudre) a davantage d’EDL2.

THEOREME 63 (Principe de superposition)

Soit I un intervalle. Soient a,b € C, et c1,co : I — C des fonctions continues. Soit k € C.
Soient fi1, fa des solutions particuliéres auz EDL2 () : y'(z) + a.y/(z) + by(z) = ci(x),
(Ee) 1y (x) + a.y/(x) + b.y(z) = ca(x) une EDL2.

Alors, la fonction f = f1+k.fo est une solution particuliere de I’équation (€) : " (z)+a.y'(x)+
by(z) =c1(x) + k.co(x).

Démonstration — Sur feuille. Il faut vérifier les calculs.

EXERCICE 13 — Déterminer une solution particuliére de l’équation différentielle (E) : y"(x) —
3y (z) + 2y(x) = 3e* — e~ * + cos(z).

8.3 Résolution générale
Pour résoudre une EDL2, le résultat général reste identique a celui des EDLI.

THEOREME 64 (Existence de solutions)

Soit (€) :y" + a.y’ + by = c¢(x) une EDL d’ordre 2 & coefficients constants.
Alors ’équation (E) admet des solutions.

Démonstration — (Hors programme).

THEOREME 65 (Solutions d’une EDL2 & coeffs constants)
Soit (£) :y" 4+ a.yy + by = ¢(x) une EDL2 a coeffs constants.
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Soit f, une solution particuliére de (£). Soit : mathcalSy des solutions de I’équation homogéne
associée y" + a.y’ + b.y = 0.
Alors, l’ensemble des solutions de (E) noté S est :

S={fp+ [, avec f € Sp}.

Démonstration — Sur feuille. On utilise les résultats précédents (existence d’une solution par-
ticuliére, linéarité, solutions de l’équation homogéne associée).

On peut donc donner une méthode générale de résolution d’'une EDL d’ordre 2 a coefficients
constants.

METHODE 66 (Résoudre une EDL2 & coeffs constants)
Soit (&) : y" + a.y + by = c(x) une EDL d’ordre 2 a coefficients constants. Pour déterminer
l’ensemble des solutions de (E).
1. On résoud l’équation homogéne associée (&) y" + a.y’ + by =0 associée a (E).
Cela utilise I’équation caractéristique x*> + ax + b = 0.
2. On détermine une solution particuliére f, de (£).
Soit, on trouve une “solution évidente”. (Utilisable parfois)
Si la fonction ¢ s’écrit comme une somme de fonction plus simples, on utilise le principe
de superposition. (Utilisable parfois)
Si c(z) = Ae* ou Bcos(w.x) ou Bsin(w.z), on trouve une solution particuliére avec les
méthodes spécifiques pour ces fonctions.

3. Soit Sy l’ensemble des solutions de (Ey).
Alors, l'ensemble des solution de (£) est

S={fp+ [, avec f € Sp}.

-\@'-Application a la Physique
On rencontre également beaucoup d’EDL d’ordre 2 a coefficients constants en Physique
et S.1.
Leur forme générale est y'(t) + 2My/(t) + wiy(z) = f(t), avec :
e 1y est une grandeur évoluant au cours du temps.
e )\ > 0 modélise les phénomenes qui dissipent de l’énergie, on l’appelle le coeffi-
cient d’amortissement.
o la constante wy > 0 est la pulsation propre.
e le second membre f représente l'action extérieure sur le systeme.

EXERCICE 14 — On considére un circuit RLC en série. L’équation d’évolution de la charge q
du condensateur est : )
q  dqg . d’q
U=Z+R—-+L—5
C dt dt
1. Déterminer le coefficient d’amortissement du systéme ainsi que sa pulsation propre.
2. Donner ’expression de la charge q en fonction du temps (Résoudre ’équation différen-
tielle).

8.4 Probleme de Cauchy

On termine cette étude des EDL2 par le cas des problemes de Cauchy (une EDL2 avec des
conditions initiales). Pour une EDLI, on avait une condition initiale (f(xo) = yo). Pour une
EDL2, on a deux conditions initiales (f(zo) = yo et f'(x0) = y1).
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THEOREME 67 (Probléme de Cauchy)
Soit (€) :y"(x) + a.y/(x) + by(x) = c(x) une EDL2 a coefficients constants sur un intervalle 1.
Soient xg € I et yo,y1 € C deux constantes.

Alors,

il existe une unique solution f de l’équation (E) telle que f(xo) = yo et f'(x0) = y1.

Démonstration —

EXERCICE 15 — Déterminer l'unique solution f de l’équation différentielle y"(x) — 3y'(x) +
2y(x) = 3e® — e~ " + cos(x), telle que f(0) =0 et f'(0) = 1.

Bilan du contenu nécessaire a maitriser :

Pour f dérivable sur un intervalle I, on a f' =0 ssi f est constante.

Les primitives et EDL se résolvent sur un intervalle.

Primitive F' d’une fonction f. Une fonction f a plusieurs primitives. Sur un intervalle,
toutes les primitive de f différent a une constante pres.

Primitives des fonctions usuelles x — z", x — %, %, exp, In, cos, sin, ch, sh.

Déterminer une primitive en identifiant une dérivée.
Utilisation des dérivées de composées usuelles : (In(Ju|)’ = %, (u?) = 2u'u, (u") =
nu/un—17 (ua)/ — au/ua—l; (eu)/ ——

Théoréme d’existence d’une primitive : Toutes les fonctions continues sur un intervalle
ont une primitive. On Uécrit x — [ f(t)dt.

Théoréme de Newton-Leibniz : fab ft)dt = [F(t)]2 = F(b) — F(a).

Utilisation pour calculer des intégrales a partir de primitives.

Meéthode d’intégration par parties (IPP) : [uw'v = [uv] — [wv', pour déterminer des
primitives et des intégrales.

Méthode basée sur la dérivée d’un produit ((uwv) = vw'v + wv'). On wutilise 'IPP pour
obtenir une fonction plus simple d primitiver.

Méthode du changement de variables : u = f(x),du = f'(z)dz, pour déterminer des
primitives et des intégrales.

Pour les intégrales, il faut vérifier que f'(x) ne s’annule pas sur |a,bl. Pour les primi-
tives, si on doit utiliser x = f~(u), on fera attention au domaine de définition de la
primitive apres les calculs effectués.

Primitives des fonctions de la forme x — m

b2 — dac. Cas o= @=ra) €05 (cmid)2’ Ca8 (et d)Z 1) -

Définition des ED, EDL, EDLH, EDLcc, EDLy et EDLs.

Solution particuliere d’une EDL. Savoir tester des fonctions “simples” pour trouver une
solution "évidente”.

EDL; : Résolution des EDL1H (y'(z) + a(x)y(z) =0).

Résolution des EDLy (y'(z)+a(z)y(x) = b(x)) via les solutions de 'EHA et une solution
particuliere.

Méthode de variation de la constante pour trouver une solution particuliére.

Probléme de Cauchy (conditions initiales). Savoir déterminer 'unique solution d’un
probléme de Cauchy.

EDLs : Résolution des EDLyHce (y'(x)+ay'(x)+by(x) = 0). Equation caractéristique
2?2 +ar+b=0.

Résolution des EDLycc homogeénes (y"(x) + ay'(z) + by(x) = c(x)) via les solutions de
I’EHA et une solution particuliére. Solution particuliere dans le cas c(x) = Aexp(rx).
Probléme de Cauchy (conditions initiales). Savoir déterminer l'unique solution d’un
probleme de Cauchy.

selon le signe du discriminant A =
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