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1 Introduction

Ce chapitre est la première partie des deux chapitres sur l’intégration dans le programme
de PTSI. Il se veut pratique et calculatoire, dans le but de résoudre des équations différentielles
simples et de faire du calcul intégral.
Nous allons relier calcul de primitives et d’intégrales, travailler des techniques de calcul comme
l’intégration par parties et le changement de variables.
Puis, nous résoudrons les équations différentielles linéaires du premier et second ordre.
Les équations différentielles apparaissent fréquemment en physique, car elles modélisent de
nombreuses situations dans toutes les sciences.
Il s’agit d’un type d’équation dont les inconnues ne sont plus des nombres mais des fonctions.

Remarque 1 — Dans ce chapitre, I désignera un intervalle ouvert (I =]α, β[).
Les résultats obtenus pourront s’étendre aux fonctions à valeurs dans C (f : I → C, fonctions
à valeurs complexes), sauf si le contraire est précisé.

Pour une fonction définie sur un intervalle et à valeurs dans C, la dérivabilité se définit
comme ceci :

Définition 2
Soit I un intervalle. Soit f : I → C une fonction telle que t 7→ Re(f(t)) et t 7→ Im(f(t)) sont
dérivables sur I.
Alors f est dérivable sur I, et pour tout t ∈ I on a :

f ′(t) = Re(f(t))
′
+ iIm(f(t))

′

Électrocinétique
Dans un dipole RC en régime sinusöıdal dont un générateur impose aux bornes du dipole
une tension e(t) = E cos(ωt+ ϕ).
On obtient que la tension dans le système est donnée en fonction du temps par

u(t) =
Eejωt

1 + jRCω
.

Remarque : En physique on utilise la lettre j pour désigner le nombre complexe i, la
lettre i étant réservée pour des intensités (courant électrique, intensité lumineuse).

Application à la Physique

2 Primitives d’une fonction définie sur un intervalle à valeurs com-
plexes

2.1 Définitions

Définition 3 (Primitive)
Soient I un intervalle de R et f : I → C une fonction.
On appelle primitive de f une fonction F : I → C dérivable, telle que F ′ = f .

Une primitive n’est pas unique, on ne parlera donc pas de la primitive mais d’une pri-
mitive.

Risque d’erreur

1
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En effet, les fonctions constantes x 7→ 1 et x 7→ 3 sont deux primitives distinctes de la
fonction nulle x 7→ 0.

Exemple 4 —
� La fonction x 7→ cos(x)− x est une primitive de x 7→ − sin(x)− 1.

� Pour tout n ∈ N⋆, x 7→ xn

n!
est une primitive de x 7→ xn−1

(n− 1)!
� x 7→ −ieix est une primitive de x 7→ eix.

2.2 Ensemble des primitives d’une fonction sur un intervalle

Lorsque une primitive existe on sait qu’elle n’est pas unique.
On décrit ici l’ensemble des primitives d’une fonction f , dans le cas où f admet une primitive.

Proposition 5
Soit f : I → C qui admet primitive F0 : I → C.
Alors, les primitives de f sur I sont toutes de la forme x 7→ F0(x) + k, avec k ∈ C.

Si la fonction f est à valeurs réelles, les primitives (à valeurs réelles) sont définies à une
constante réelle près.

Exemple 6 — L’ensemble des primitives réelles de f : x 7→ x3 − 1 est

{x 7→ x4

4
− x+ k | k ∈ R}.

3 Primitives des fonctions usuelles

3.1 Tableau de primitives classiques

Le tableau suivant est réciproque à celui des dérivées. Il permet de calculer directement un
grand nombre d’intégrales.

Fonction f Primitive F Intervalle I

x 7→ a (constante non nulle) x 7→ ax R

x 7→ xn(n ≥ 1) x 7→ xn+1

n+ 1
R

x 7→ 1

xn
(n > 1) x 7→ − 1

(n−1)xn−1 ]−∞; 0[ ou]0;+∞[

x 7→ xα (α ̸= −1) x 7→ xα+1

α+1 R∗
+

x 7→ 1√
x

x 7→ 2
√
x R∗

+

x 7→ 1

x
lnx R∗

+

x 7→ ex x 7→ ex R
x 7→ ln(x) x 7→ x ln(x)− x R⋆

+

x 7→ ch(x) x 7→ sh(x) R
x 7→ sh(x) x 7→ ch(x) R

2
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Fonction f Primitive F Intervalle I

x 7→ sin(x) x 7→ − cos(x) R
x 7→ cos(x) x 7→ sin(x) R

x 7→ 1

1 + x2
x 7→ arctan(x) R

x 7→ 1√
1− x2

x 7→ arcsin(x) ]− 1; 1[

x 7→ −1√
1− x2

x 7→ arcos(x) ]− 1; 1[

x 7→ tan(x) x 7→ − ln(|cos(x)|) ]− π
2 + kπ; π2 + kπ[, k ∈ Z

3.2 Primitive d’un produit exponentielle - fonction trigonométrique

Proposition 7

Soit λ ∈ C⋆. Alors, x 7→ eλx

λ
est une primitive de x 7→ eλx. (Cf. Complexes)

Proposition 8
Soit f : I → C, une fonction admettant une primitive F : I → C.
Alors Re(F ) et Im(F ) sont des primitives de Re(f) et Im(f).

On peut appliquer le résultat précédent pour rechercher des primitives de fonctions réelles :

Méthode 9 (Déterminer une primitive de x 7→ eax cos(bx) ou x 7→ eax sin(bx))

1. On pose λ = a+ ib et f(x) = eλx = eax cos(bx) + ieax sin(bx).

2. On sait que F : x 7→ eλx

λ
est une primitive de f .

3. On calcule la partie réelle et imaginaire de F , et on obtient ainsi une primitive pour
x 7→ eax cos(bx) et x 7→ eax sin(bx).

Exemple 10 — x 7→ ex ×
(
cos(x)− sin(x)

2

)
est une primitive de x 7→ ex cos(x).

Exercice 1 — Déterminer une primitive de x 7→ e2x cos(3x) et de x 7→ e2x sin(3x).

3.3 Primitives de x 7→ 1

ax2 + bx+ c

On déterminer les primitives des fonctions de la forme x 7→ 1

ax2 + bx+ c
, pour a, b, c ∈ R.

Cela nécessite plusieurs cas.

On distingue d’abord par un cas plus simple (le cas a = 0).

Pour b ̸= 0, on sait calculer les primitives des fonctions de la forme x 7→ 1

bx+ c
à l’aide de

la fonction logarithme.

Proposition 11

Soient b, c ∈ R, b ̸= 0, et
f : R \ {−c

b } −→ R

x 7−→ 1

bx+ c

.

Alors, une primitive de f est F (x) =
ln (|bx+ c|)

b
.

Démonstration — Sur feuille. On dérive F .

3
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Proposition 12

Soient a, b ∈ R avec a ̸= 0, et
f : R \ {−b

a } −→ R

x 7−→ 1

(ax+ b)2
.

Alors une primitive de f est F (x) =
−1

a
× 1

ax+ b
.

Démonstration — On dérive F pour vérifier que F ′ = f .

Proposition 13

Soient a, b ∈ R avec a ̸= 0, et
f : R −→ R

x 7−→ 1

(ax+ b)2 + 1
.

Alors une primitive de f est F : x 7→ 1

a
× arctan(ax+ b). Démonstration — On dérive F .

Avec les primitives précédentes, on peut obtenir une primitive de toutes les fonctions de la

forme
1

ax2 + bx+ c
. Cela est indiqué dans la méthode suivante :

Méthode 14

Soient a ̸= 0 et b, c ∈ R et f : x 7→ 1

ax2 + bx+ c
.

En fonction du signe du discriminant de ax2 + bx+ c, il y a 3 cas différents de primitives.

1. Si ∆ = b2 − 4ac > 0, on a x1, x2 ∈ R tels que ax2 + bx+ c = a(x− x1)(x− x2).

(a) Alors, il existe α, β ∈ R tels que f(x) =
1

a
×
[

α

x− x1
+

β

x− x2

]
.

On développe l’expression de droite pour trouver les valeurs de α et β.

(b) Une primitive de f est alors :

α

a
× ln(|x− x1|) +

β

a
× ln(|x− x2|)

2. Si ∆ = 0, alors il existe x0 ∈ R tel que f(x) = a(x− x0)
2.

Une primitive de f est alors :

F (x) =
−1

a
× 1

x− x0
.

3. Si ∆ < 0, alors il existe α, β, γ ∈ R tels que ax2 + bx+ c = α((βx+ γ)2 + 1).
On développe l’expression de droite pour trouver les valeurs α, β, γ.
Une primitive de f est alors :

F (x) =
1

αβ
× arctan(βx+ γ).

Exercice 2 — Déterminer une primitive des fonctions suivantes :

1. f1 : x 7→ 1

x2 − 3x+ 2

2. f2 : x 7→ 1

x2 − 4x+ 4

3. f3 : x 7→ 1

x2 + x+ 1

4 Existence de primitives

Venons-en au théorème central sur les primitives.

4
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4.1 Théorème fondamental de l’analyse

Théorème 15 (Théorème fondamental de l’analyse)
Soit I un intervalle. Soit f une fonction continue sur I, et a ∈ I.
Alors, la fonction F : x ∈ I 7→

∫ x
a f(t)dt ∈ R est dérivable sur I,

et sa dérivée est la fonction f (F ′ = f).
Autrement dit, la fonction x 7→

∫ x
a f(t)dt est une primitive de f .

Démonstration —Admis. (Pour l’instant)

Pour une fonction f à valeurs complexes, on applique le théorème précédent à Re(f) et à
Im(f). En effet, avec les propriétés de l’intégrale (linéarité de l’intégrale), on a :∫ b

a
f(t)dt =

∫ b

a
Re(f(t))dt+

∫ b

a
Im(f(t))dt

Remarque 16 — La primitive F : x ∈ I 7→
∫ x
a f(t)dt donnée dans le théorème fondamental

est l’unique primitive de f qui s’annule en a (F (a) = 0).

Notation 17

Pour f une fonction continue, la notation

∫ x

f(t)dt désigne une primitive générique de f .

On en déduit ainsi l’outil fondamental du calcul intégral, que vous avez déjà rencontré en
classe de terminale.

Théorème 18 (Théorème de Newton-Leibniz)
Soit I un intervalle. Soit f une fonction continue sur I, et F une primitive de f sur I.
Alors, pour tous a, b ∈ I on a : ∫ b

a
f(t)dt = F (b)− F (a).

Définition 19
On note [F (t)]ba = F (b)− F (a).

Exemple 20 — On sait que f : x 7→ cos(x)− x est continue sur [0, π] et admet pour primitive

F : x 7→ sin(x)− x2

2
.

D’après le théorème de Newton-Leibniz, on a alors :∫ π

0
f(t)dt = [F (t)]π0 = (sin(π)− π2

2
)− (sin(0)− 02

2
) = −π2

2
.

Le théorème de Newton-Leibniz indique que déterminer une primitive et calculer une in-
tégrale sont les deux faces d’une même pièce. Si l’on connâıt la valeur des intégrales, alors on
connâıt la primitive. Et si l’on connâıt la primitive, alors on connâıt la valeur des intégrales.
Lorsque l’on vous demande de calculer une intégrale, l’une des méthodes pour y arriver est de
chercher une primitive de la fonction à intégrer.
Cependant, il n’est pas toujours possible de déterminer une primitive d’une fonction f don-
née. (Ex : Il est impossible d’exprimer une primitive de x 7→ exp(x2) uniquement à l’aide des
fonctions usuelles (comme un produit, somme, composée, quotient de fonctions usuelles).

4.2 Fonction de classe C1

Dans le théorème fondamental de l’analyse, on a considéré une primitive F d’une fonction
f continue. La fonction F est une fonction dérivable dont la dérivée est continue.
Ce type de fonction est très utile en analyse. Ce sont les fonctions de ”classe C1”.

5
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Définition 21 (Fonctions de classe C1)
Soient I un intervalle et f : I → C.
On dit que f est de classe C1 sur I si elle est dérivable sur I et si sa dérivée f ′ est continue
sur I.
On note C1(I) l’ensemble des fonctions de classe C1 sur I

Exemple 22 — Soit I =]− 1, 1[.

1. La fonction f : x 7→ x2 + x+ 1 est de classe C1 sur I.

2. Par contre, la fonction g : x 7→
{

x sin( 1x) si x ̸= 0
0 si x = 0

est continue sur I, mais n’est pas

de classe C1 sur I.
Elle est par contre de classe C1 sur ]0, 1[.

Proposition 23
Soient I un intervalle et f, g ∈ C1(I). Alors :

� La somme f + g est de classe C1 sur I.
� Le produit f × g est de classe C1 sur I.
� Pour tous λ, µ ∈ R, λ.f + µ.g est de classe C1 sur I.

� Si g ne s’annule pas sur I, le quotient
f

g
est de classe C1 sur I.

� Pour h : J → I de classe C1, la composée f ◦ h est de classe C1.
Démonstration — On utilise les formules de dérivation d’une somme,produit,quotient,composée,
et les propriétés des fonctions continues.

Théorème 24 (Linéarité de l’intégrale)
Soient λ, µ ∈ R et f, g des fonctions continues sur I. Alors, pour tous a, b ∈ I on a :∫ b

a
λ.f(t) + µ.g(t)dt = λ.

∫ b

a
f(t)dt+ µ.

∫ b

a
g(t)dt

Démonstration — On utilise le théorème de Newton-Leibniz, et les propriétés de la dérivée de
sommes/multiples.

Grâce au théorème de Newton-Leibniz, on relie sans soucis dérivée et intégration :

Proposition 25
Soit f une fonction de classe C1 sur I. Alors, pour tous a, b ∈ I on a :

f(b)− f(a) =

∫ b

a
f ′(t)dt.

Démonstration — Sur feuille.

Exercice 3 — Montrer que F : x 7→ Arctan(x)

x2 + 1
est de classe C1 sur R.

Calculer sa dérivée.

5 Techniques de calculs

5.1 Formules de dérivations

Pour pouvoir facilement reconnâıtre une primitive d’une fonction f que l’on souhaite inté-
grer , on peut utiliser les formules suivantes de dérivations :

6
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u′√
u
= (2

√
u)′

u′

u2
=

(
−1

u

)′

2u′u = (u2)′ u′un =

(
1

n+ 1
un+1

)′
u′uα =

(
uα+1

α+ 1

)′
(α ̸= −1)

u′

u
= (ln |u|)′ u′eu = (eu)′

.

Exercice 4 — Soit f la fonction définie sur R∗
+ par f(x) = ln(x)

x .
Déterminer une primitive de f .

5.2 Intégration par parties

Une deuxième méthode pour s’aider à calculer des intégrales est l’intégration par parties.
Cela permet de transformer l’intégrale, en utilisant la formule (uv)′ = u′v + uv′.

Théorème 26 (IPP)
Soient I un intervalle et u, v ∈ C1 de classe C1.
Alors, pour tous réels a, b ∈ I, on a :∫ b

a
u(t)v′(t)dt = [u(t)v(t)]ba −

∫ b

a
u′(t)v(t)dt

Démonstration — Sur feuille.

Exemple 27 — Déterminons à l’aide d’une intégration par partie la valeur de

∫ e

1
ln(t)dt.

On pose pour cela u(t) = ln(t) et v′(t) = 1, on a donc pour tout t ∈ [1, e], u′(t) =
1

t
, et une

primitive de v′ est donnée par v(t) = t.
Les fonction u et v sont bien de classe C1 sur [1, e].
D’après la formule d’intégration par parties on obtient :∫ e

1
ln(t)dt = [t ln(t)]e1 −

∫ e

1
t× 1

t
dt = e−

∫ e

1
1dt = e− (e− 1) = 1.

Méthode 28
Pour calculer une intégrale par intégration par parties (IPP) :

1. On détermine les fonctions u et v qui interviennent et on vérifie qu’elles sont de classe
C1 sur l’intervalle considéré.

2. On calcule l’intégrale
∫ b
a u′(t)v(t)dt, qui doit être plus facile à calculer que l’intégrale

initiale.
Si ce n’est pas le cas, alors l’intégration par parties que l’on a faite n’aide pas.

3. On applique la formule d’intégration par parties.

Exercice 5 — Calculer les intégrales suivantes à l’aide d’une intégration par parties :

7
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1.

∫ 1

0
tetdt. 2.

∫ e

1
ln(x)dx.

Exercice 6 — Déterminer, à l’aide d’une intégration par parties, une primitive de arctan.

5.3 Changement de variables

Une autre technique pour calculer des primitives/intégrales est le changement de variables.
Cela se base sur la formule (u ◦ v)′ = v′.u′ ◦ v.

Théorème 29
Soient f une fonction continue sur [a; b], et u une fonction C1 sur [α;β], telle que u([α;β]) ⊂
[a; b]. Alors, on a : ∫ β

α
f(u(t))u′(t)dt =

∫ u(β)

u(α)
f(x)dx

Effectuer un changement de variables sur l’intégrale
∫ b
a f(t)dt consiste à remplacer la va-

riable t par une nouvelle variable u.
La première intégrale est alors égale à une deuxième intégrale.
Et, si la variable u est bien choisie, la deuxième intégrale est plus simple à calculer.
Cette variable u s’exprime en fonction de t (ex : u = cos(t), u = t2, u = exp(t)).
Dans l’intégrale, il faut ensuite remplacer les 3 éléments qui dépendent de t :

1. Les bornes a, b.

2. La fonction intégrée f(t).

3. La variable d’intégration dt.

Voyons cela sur des exemples.

Exemple 30 — Calculer
∫ 2
1 ln(t)2dt.

1. On pose u = ln(t).
La fonction ln est bien définie sur [1, 2], dérivable, de dérivée continue.
Elle est bien de classe C1 sur [1, 2].

2. On a u = ln(t) ⇔ t = exp(u).
En différenciant, on obtient : du = 1

t dt et dt = exp(u)du.

3. Quand t = 1 on a u = ln(1) = 0, et quand t = 2 on a u = ln(2).

4. On a ln(t)2 = u2.

5. On obtient donc, par changement de variables :
∫ 2
1 ln(t)2dt =

∫ ln(2)
0 u2 exp(u)du.

6. Une primitive de la fonction u 7→ u2 exp(u) est u 7→ exp(u)(u2 − 1
2u+ 1

2).

Ainsi, on a
∫ 2
1 ln(t)2dt =

∫ ln(2)
0 u2 exp(u)du = [exp(u)(u2 − 1

2u + 1
2)]

ln(2)
0 = 2(ln(2)2 −

ln(2)
2 + 1

2)− 1.(0− 0 + 1
2).

Exemple 31 — Pour calculer

∫ 1
2

0

√
1− t2dt :

� On peut poser le changement de variables t = sin(u).
En effet, on a sin de classe C1 sur [0, π6 ] et sin([0,

π
6 ]) = [0, 12 ] et dt = cos(u)du.

� Par la formule de changement de variables, on obtient que :∫ 1
2

0

√
1− t2dt =

∫ π
6

0

√
1− sin(u)2 cos(u)du =

∫ π
6

0
cos(u)2du

8
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� En linéarisant cos2(u), on obtient cos2(u) =
1 + cos(2u)

2
, dont une primitive est u 7→

u

2
+

sin(2u)

4
.

� On obtient la valeur de l’intégrale initiale :∫ 1
2

0

√
1− t2dt =

[
2u+ sin(2u)

4

]π
6

0

=
π

12
+

1

2

1

4
.

Méthode 32
Soit I =

∫ b
a f(t)dt. Pour effectuer un changement de variables :

• On pose x = u(t) où u est une fonction de classe C1 sur [a; b].
Cela donne dx = u′(t)dt, ainsi que t = u−1(x) et dt = (u−1)′(x)dx.

• On utilise ces relations pour remplacer f(t) et dt dans l’intégrale par des termes en x
et dx.

• Enfin, on s’occupe des bornes. Quand t = a on a x = u(a), et quand t = b on a x = u(b).

On a alors
∫ b
a f(t)dt =

∫ u(b)
u(a) g(x)dx.

L’objectif est que cette seconde intégrale soit a priori plus simple à calculer.
Si ce n’est pas le cas, alors le changement de variables choisi n’aide pas.

Exercice 7 — Calculer I =

∫ 1

0

ln(1 + et)

1 + e−t
dt en effectuant le changement de variables x =

1 + et.

6 Equations différentielles linéaires

Maintenant que nous avons des outils pour le calcul de primitives et d’intégrales, nous allons
étudier les équations différentielles linéaires d’ordre 1 et 2. Commençons par définir cela.

Définition 33
Soit I un intervalle. Soient a, b, c : I → R des fonctions continues.
Une équation différentielle (sur I) est une équation où l’inconnue est une fonction y.
Cette fonction y peut être à valeurs réelles (y : I → R) ou parfois à valeurs complexes (y : I →
C).
Les familles d’équations différentielles que nous étudierons sont :

� y′(x) + a(x)y(x) = b(x), équation différentielle linéaire d’ordre 1 (EDL1) ;
� y′(x) + a(x)y(x) = 0, équation différentielle linéaire d’ordre 1 homogène (EDL1 ho-
mogène) ;

� y′′(x) + a(x)y′(x) + b(x)y(x) = c(x), équation différentielle linéaire d’ordre 2 (EDL2) ;
� y′′(x) + a(x)y′(x) + b(x)y(x) = 0, équation différentielle linéaire d’ordre 2 homogène
(EDL2 homogène).

Dans certains cas, les fonctions a (ou a, b) seront constantes. On parle alors d’équations à
coefficients constants.
Une EDL homogène est une équation différentielle dont le terme de droite vaut 0.

Exemple 34 —
— y(′x) + 2xy(x) = 0 est une EDL1 homogène (sur I = R).

La fonction x 7→ e−x2
est une solution.

— y′(x) + 1
xy(x) = 3 est une EDL1 (sur I =]0,+∞[ ou sur ]−∞, 0[).

— y′(x)− 2y(x) = x est une EDL1, à coefficients constants (sur I = R).
La fonction x 7→ −2x−1

4 est une solution.
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— y′′(x) + y(x) = 0 est une EDL2 homogène, à coefficients constants (sur I = R).
Les fonctions cos et sin sont des solutions.

— y′′(x)− exy′(x) + 3 cos(x)y(x) = ln(x) est une EDL2 (sur I =]0,+∞[).
— y′′(x)− 2y′(x)+ 3y(x) = ln(x) est une EDL2, à coefficients constants (sur I =]0,+∞[).

Remarque 35 — Les solutions d’une EDL1 doivent être des fonctions dérivables. (il faut que
y′ existe)
Les solutions d’une EDL2 doivent être des fonctions deux fois dérivables. (il faut que y′, y′′

existent).
Pour certaines équations différentielles, il est possible de trouver avec quelques calculs une

solution. Par exemple, la fonction nulle (x 7→ 0) est toujours une solution des EDL homogènes.
L’objectif de ce chapitre est de résoudre des EDL, c’est-à-dire trouver toutes leurs solutions.
Nous étudierons de même certaines propriétés des équations différentielles et de leurs ensembles
de solutions.

7 Équations différentielles linéaires du premier ordre

7.1 Définitions

Proposition 36
Soit I un intervalle.
L’ensemble des solutions de l’équation différentielle (E) : y′(x) = 0 sur I est S = {x ∈ I 7→
C, C ∈ R}.
Autrement dit, pour y une fonction dérivable, sa dérivée y′ est la fonction si et seulement si y
est une fonction constante.

Ce résultat, que nous avons en fait déjà vu avec les propriétés des intégrales, est le premier
élément qui permet de résoudre des EDL.

Exemple 37 — L’équation (E) : y′ − y = x est une équation différentielle linéaire du premier
ordre (EDL1). Sur I = R, ses solutions sont exactement les fonctions de la forme x 7→ k.ex −
x− 1, pour k ∈ R.

Définition 38 (Equation homogène associée)
Soit (E) : y′(x) + a(x)y(x) = b(x) une équation différentielle linéaire du premier ordre.
On appelle équation homogène associée à (E) l’EDL1 (Eh) : y′(x) + a(x)y(x) = 0.

7.2 Résolution d’une équation homogène

Une équation différentielle homogène admet toujours la fonction nulle comme solution.
On s’intéresse ici à déterminer l’ensemble de toutes les solutions d’une équation différentielle
homogène.
Nous allons nous servir de la fonction exponentielle et des primitives pour décrire la forme des
solutions en général.

Exemple 39 — (Résolution des EDL1 homogènes à coefficients constants) Pour aborder
la résolution générale des EDL1 homogènes, traitons d’abord le cas particulier à coefficients
constants.
C’est-à-dire lorsque l’équation est de la forme (E) : y′(x) + ay(x) = 0, pour un a ∈ R.

Nous allons raisonner en deux temps.
On remarque d’abord que pour tout x ∈ R, on a (e−ax)′ = −ae−ax.
On obtient (e−ax)′ + a.e−ax = −ae−ax + a.e−ax = 0, donc x 7→ e−ax est solution de l’équation
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(E).

Soit maintenant, f : R → R une solution de l’équation différentielle (E).
On pose y : x ∈ R 7→ f(x)eax, définie sur R et dérivable comme produit de fonctions dérivables.
Alors, pour tout tout x ∈ R, on obtient :

y′(x) = f ′(x).eax + f(x).(aeax) = −a.f(x)eax + a.f(x)eax = 0.

D’après une Proposition précédente, on en déduit que y est constante sur R.
Ainsi, il existe un k ∈ R tel que f : x 7→ k.e−ax.

Conclusion : L’ensemble des solutions de l’équation (E) est S = {x 7→ k.e−ax | k ∈ R}.

Théorème 40 (Solutions d’une EDL1 homogène)
Soit I un intervalle. Soit (E0) : y′(x) + a(x)y(x) = 0 une EDL1 homogène sur I. Alors :

1. Il existe f0 une solution de (E0) qui n’est pas la fonction nulle.

2. La fonction f0 ne s’annule pas sur I. (∀x ∈ I, f0(x) ̸= 0)

3. L’ensemble des solutions de (E0) est

S0 = {λ.f0 | λ ∈ R}.

4. Soit A : I → R une primitive de la fonction a.
Alors, la fonction x 7→ exp(−A(x)) est une solution de (E0), qui ne s’annule pas.

Démonstration — Sur feuille.

Méthode 41 (Résoudre une EDL1 homogène)
Soit (E0) : y′(x) + a(x)y(x) = 0 une EDL1 homogène, sur un intervalle I. Résolvons-la.

1. On détermine A : I → R une primitive de a.

2. On pose f0 : x 7→ e−A(x).

3. L’ensemble des solutions S0 de (E0) est S0 = {λ.f0 | λ ∈ R}.

Exercice 8 — Résoudre les équations différentielles suivantes.
On précisera l’ensemble de définition de a, et l’intervalle sur lequel on résout l’EDL.

1. y′ + cos(x)y = 0

2. y′ − 1√
1− x2

y = 0

3. y′ +
ln(x)

x
.y = 0

Maintenant que l’on sait résoudre les EDL1 homogènes, résolvons les EDL1. Pour cela, nous
avons besoin de deux outils en plus.

7.3 Principe de superposition

Théorème 42 (Principe de superposition)
Soit I un intervalle. Soient a, b1, b2 : I → R des fonctions continues. On pose (E1) : y

′+a(x)y =
b1(x) et (E2) : y

′ + a(x)y = b2(x) des EDL1.
Soient f1, f2 des solutions de (E1) et (E2).
Alors, f1 + f2 est une solution de l’EDL1 (E1 + E2) : y

′ + a(x)y = b1(x) + b2(x).
Démonstration — On vérifie que f1 + f2 est une solution de l’EDL1.
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Méthode 43
Quand la fonction b dans le second membre (le terme de droite) est compliquée, on la dé-
compose en une somme de fonctions plus simples : b = b1 + . . .+ bn.
Ensuite, pour chaque i ∈ {1, . . . , n}, on trouve fi une solution à l’EDL1 dont le second membre
est bi.
Enfin, d’après le principe de superposition, la fonction f = f1 + . . . + fn est une solution de
l’EDL1 y′(x) + a(x)y(x) = b(x).

Exemple 44 — Pour trouver une solution à (E) : y′(x)+y(x) = x+cos(x)+e2x, on cherche une
solution à (E1) : y′(x) + y(x) = x,(E2) : y′(x) + y(x) = cos(x), et (E3) : y′(x) + y(x) = e2x.

En tâtonnant on trouve que f1(x) = x − 1, f2(x) = cos(x)+sin(x)
2 et f3(x) = 1

3e
2x sont des

solutions de (E1), (E2), (E3).

Donc, f(x) = x− 1 + cos(x)+sin(x)
2 + 1

3e
2x est une solution de (E).

Remarque 45 — Fait important : Nous allons utiliser le principe de superposition avec f =
f + 0.

Exemple 46 — Soit (E) : y′(x) + y(x) = x. C’est une EDL1 sur I = R.
Son équation homogène associée est (E0) : y′(x) + y(x) = 0.
Or, on connâıt toutes les solutions de (E0) : ce sont les fonctions de la forme x 7→ ke−x, avec
k ∈ R.
On a aussi vu que f0(x) = x− 1 est une solution de (E).
D’après le principe de superposition, on en déduit que toutes les fonctions de la forme x 7→
ke−x + x− 1, k ∈ R, sont des solutions de (E).

7.4 Plan de résolution d’une équation différentielle

Pour résoudre une EDL1 nous allons utiliser le principe de superposition : une solution de
l’EDL1 s’écrit comme la somme d’une solution de l’EDL1 homogène associée et d’une solution
particulière de l’équation.

Théorème 47
Soit (E) : y′(x) + a(x)y(x) = b(x) une EDL1 sur un intervalle I.
Notons (E0) : y′(x) + a(x)y(x) = 0 son équation homogène associée, et S0 l’ensemble des
solutions de (E0).

1. L’équation (E) possède au moins une solution fp.

2. L’ensemble des solutions de l’EDL (E) est S = {fp + f, f ∈ S0}.
Les solutions de l’EDL (E) sont toutes les fontions qui s’écrivent comme la somme d’une
solution fp de (E) et d’une solution de son EDL homogène associée (E0).

3. Pour A : I → R une primitive de a, on a ainsi S = {x 7→ fp(x) + ke−A(x), k ∈ R}.

Démonstration — Sur feuille. On combine les résultats précédents (existence d’une solution par-
ticulière, linéarité, solutions de l’équation homogène associée).

Ainsi, si l’on sait trouver une solution à une EDL1 (E), on peut trouver toutes ses solutions
grâce au théorème précédent.

Méthode 48 (Résolution d’une EDL1)
Soit (E) : y′(x) + a(x)y(x) = b(x) une EDL1, sur un intervalle I. Résolvons cette EDL.

1. On pose (E0) : y′(x) + a(x)y(x) = 0 l’équation homogène associée à (E), et on résout
cette EDL.
Pour A : I → R une primitive de a, les solutions de (E0) sont les x 7→ ke−A(x), k ∈ R.
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2. On trouve fp : I → R une solution de (E).
Cette solution est appelée solution particulière.
Il existe pour cela plusieurs méthodes.
• On peut tenter de chercher une ”solution évidente” (une solution qui a une expression
simple). (Très rapide, pas toujours utilisable)
• Si la fonction b a une forme précise, on peut chercher une solution particulière fp avec
une certaine forme (Rapide, pas toujours utilisable).
• Si la fonction b s’écrit comme une somme de plusieurs fonctions plus simples, on
peut utiliser le principe de superposition pour chercher une solution particulière. (Pra-
tique, souvent utilisable) • Ou bien, on utilise la méthode de variation de la constante.
(Toujours utilisable)

3. L’ensemble des solutions de (E) s’écrit :

S = {fp + f, f solution de (E0)} = {x 7→ fp(x) + ke−A(x), k ∈ R}.

7.5 Méthode de la variation de la constante

Le dernier outil pour résoudre les EDL1 dont nous avons besoin est la méthode de variation
de la constante. Son nom est un peu paradoxal, mais cette méthode permet de toujours trouver
une solution particulière à une EDL1. Elle est très efficace.

Théorème 49 (Méthode de variation de la constante)
Soit (E) : y′(x)+a(x)y(x) = b(x) une EDL1 sur un intervalle I. Soit A : I → R une primitive
de a.
• On cherche une solution particulière fp de (E) de la forme fp(x) = C(x)e−A(x), avec C : I →
R une fonction dérivable (qu’il faudra trouver).
• On obtient f ′

p(x) + a(x)fp(x) = C ′(x)e−A(x).

• Si fp est une solution de ((E), on a alors C ′(x) = b(x)eA(x).
• En prenant pour C une primitive de x 7→ b(x)eA(x), la fonction fp(x) = C(x)e−A(x) est bien
une solution particulière de (E).
Démonstration — Sur feuille.

Exemple 50 — A l’aide de la méthode de variation de la constante déterminons une solution
particulière de l’équation (E) : y′(x) + x.y(x) = x.

Les fonctions a(x) = x et b(x) = x sont continues sur R. On va résoudre l’EDL sur I = R.

� La fonction A : x 7→ x2

2
est une primitive de a.

� Soit C : R → R une fonction dérivable. On pose fp : x 7→ C(x)e−
x2

2 .
On veut faire en sorte que fp soit une solution particulière de (E).

� Pour tout x ∈ R, on a

f ′
p(x) + x.fp(x) = C ′(x)e−

x2

2 + C(x).(−x.e−
x2

2 ) + x.C(x)e−
x2

2 = C ′(x)e−
x2

2 .

� La fonction fp est une solution de (E) si et seulement si pour tout x ∈ R, C ′(x) =

b(x).e
x2

2 = x.e
x2

2 .

On recherche une primitive de x 7→ x.e
x2

2 . Comme cette fonction est de la forme
u′exp(u), on lui trouve facilement une primitive.

On pose alors C(x) = e
x2

2 .

� On obtient que fp : x 7→ 1 = e
x2

2 × e−
x2

2 est une solution particulière de (E).
Et, avec le théorème précédent, on obtient que les solutions de (E) sont exactement les

fonctions de la forme x 7→ 1 + k exp(
x2

2
), avec k ∈ R.

13



Lycée du Diadème - Te Tara o Mai’ao PTSI, Année 2025-2026

Remarque 51 — Dans l’exemple, on pouvait déterminer fp de façon bien plus rapide (c’était
une ”solution évidente”). Il y a parfois des solutions particulières très simples pour des équations
différentielles, et les trouver nécessite de la pratique.

7.6 Les EDL1 en sciences

Les EDL d’ordre 1 représentent de nombreuses situations en sciences physiques ou indus-
trielles.

Elles prennent en général la forme y′(x) +
1

τ
y(x) =

A(t)

τ
, où

� y est une grandeur qui évolue au cours du temps.
� τ est une constante de la dimension du temps appelée temps caractéristique.

�

A

τ
modèlise une action extérieure sur le système appelée en général consigne et

est constante ou sinusöıdale. On dit que le régime est libre si A = 0 et forcé
sinon.

Application à la SI

Exercice 9 — Soit v la vitesse d’un corps de masse m en chute libre verticale dans un champ
de pesanteur d’intensité g.
Supposons que le corps est soumis à une force de frottement de l’air proportionnelle à sa vitesse
f⃗ = −αv⃗. L’équation qui régit l’évolution de v est :

m
dv

dt
= −αv − g

1. Déterminer le temps caractéristique et la consigne de cette équation.

2. Déterminer une expression de la vitesse du corps en fonction du temps.

7.7 Problème de Cauchy

Nous avons vu qu’une équation différentielle du premier ordre admettait toujours au moins
une solution. Un problème de Cauchy est une équation différentielle à laquelle on ajoute des
conditions initiales sur les solutions.
Cela qui arrive souvent en pratique en Physique ou Sciences de l’ingénieur (ex : définir la
position initiale d’un objet, sa vitesse initiale).
Dans le cas d’un problème de Cauchy d’ordre 1, la solution est unique.

Théorème 52 (Solution au problème de Cauchy)
Soient I un intervalle et a, b : I → R deux fonctions continues sur I. Soient x0 ∈ I et y0 ∈ R.
Alors, il existe une unique solution f au problème de Cauchy :

(C) : y′ + a(x)y = b(x) et f(x0) = y0.

Démonstration — Sur feuille.

Exercice 10 — Déterminer l’unique solution au problème de Cauchy suivant :

C : y′ + 2y = 0 y(1) = 4.

Théorème 53
Tous les résultats obtenus pour les EDL1 à coefficients réels sont valables pour les EDL1 à
coefficients complexes (où on cherche f : I → C)

Cela termine l’étude des EDL1. Passons aux EDL2.

14



Lycée du Diadème - Te Tara o Mai’ao PTSI, Année 2025-2026

8 Équations différentielles linéaires du second ordre à coefficients constants

Les principales différences entre EDL1 et EDL2 se situent au niveau de la résolution des
équations homogènes.

Remarque 54 — Nous allons étudier et résoudre les EDL2 à coefficients constants.
C’est-à-dire, les EDL de la forme (E) : y′′(x)+a.y′(x)+b.y(x) = c(x) avec a, b ∈ R constants et
c : I → R une fonction continue. Le cas des EDL2 générales n’est pas au programme de PTSI.
Il sera abordé en deuxième année.

Exemple 55 — L’équation y′′(x) + y′(x)− y(x) = tan est une EDL2 à coefficients constants.
On peut rechercher ses solutions sur l’intervalle I =]− π

2 ,
π
2 [.

On commence par résoudre les EDL2 homogènes à coefficients constants.

8.1 Résolution des équations homogènes

Nous allons pour cela avoir besoin d’un outil, l’équation caractéristique.

Définition 56 (Équation caractéristique)
Soit (E0) : y′′(x) + a.y′(x) + b.y(x) = 0 une EDL2 homogène à coefficients constants.
On appelle équation caractéristique associée à (E0) l’équation du second degré :

x2 + ax+ b = 0

L’introduction de cette équation se justifie par la proposition suivante :

Proposition 57
Soit (E0) : y′′(x) + a.y′(x) + b.y(x) = 0 une EDL2 homogène à coefficients constants, et r ∈ C.
Alors, la fonction x 7→ erx est solution de (E0) si et seulement si r est solution de l’équation
caractéristique x2 + ax+ b = 0.
Démonstration — Sur feuille. On utilise les dérivées de x 7→ erx.

On commence par résoudre les EDL2 homogènes à coefficients complexes, car les solutions
s’écrivent beaucoup plus simplement. On résoudra ensuite les EDL2 homogènes à coefficients
réels.

Proposition 58 (EDL2 homogènes à coefficients complexes)
Soit (E0) : y′′(x) + a.y′(x) + b.y(x) = 0 une EDL2 homogène, à coefficients constants, qui sont
complexes (a, b ∈ C).
Soit x2 + ax+ b = 0 son équation caractéristique.

1. Si son équation caractéristique a deux racines distinctes r1, r2 ∈ C, alors les solutions
de (E0) sont toutes les fonctions de la forme :

x 7→ λ1.e
r1x + λ2.e

r2x, avec λ1, λ2 ∈ C.

2. Si son équation caractéristique a une racine double r0 ∈ C, alors les solutions de de (E0)
sont toutes les fonctions de la forme :

x 7→ er0x(λ1 + λ2.x), avec λ1, λ2 ∈ C.

Démonstration — Sur feuille.

Exemple 59 — L’équation (E) : y′′(x) + y(x) = 0 est une EDL2 homogène à coeffs constants.
Résolvons-la dans C. Son équation caractéristique associée est x2 + 1 = 0, qui a pour racines
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i et −i.
Donc, l’ensemble des solutions de (E) est S = {x 7→ λ1e

ix+λ2e
−ix, λ1, λ2 ∈ C}. On a exprimé

les solutions valeurs dans C de cette EDL. Ses solutions dans R s’écrivent différemment.

Traitons maintenant le cas des solutions à valeurs réelles, qui s’exprime un peu moins
simplement que dans C.

Proposition 60
Soit (E0) : y′′(x) + a.y′(x) + b.y(x) = 0 une EDL2 homogène à coefficients constants, avec
a, b ∈ R.
Soit x2 + ax+ b = 0 son équation caractéristique.

1. Si son équation caractéristique a deux racines réelles distinctes r1, r2 ∈ R, alors les
solutions de (E0) sont toutes les fonctions de la forme :

x 7→ λ1.e
r1x + λ2.e

r2x, avec λ1, λ2 ∈ R.

2. Si son équation caractéristique a une racine double r0 ∈ R, alors les solutions de (E0)
sont toutes les fonctions de la forme :

x 7→ er0x(λ1 + λ2.x), avec λ1, λ2 ∈ R.

3. Si son équation caractérique a deux racines complexes conjuguées r1 = a+ib, r2 = a−ib,
alors l’ensemble des solutions de de (E0) est l’ensemble des fonctions de la forme :

x 7→ eax(λ1 cos(bx) + λ2 sin(bx)), avec λ1, λ2 ∈ R.

Démonstration — Sur feuille.

Exercice 11 — Résoudre les équations différentielles homogènes suivantes :

1. y′′(x) + 4y′(x)− 5y(x) = 0

2. y′′(x)− 2y′(x) + y(x) = 0

3. y′′(x) + 2y′(x) + 2y(x) = 0

8.2 Solution particulière

On résoud les EDL2 avec la même idée que les EDL1 : On trouve les solutions de l’EDL
homogène associée, et on trouve une solution particulière.
Mais, trouver une solution particulière d’une EDL2 n’est pas aussi simple que pour les EDL1.
Il existe une méthode de la variation de la constante pour les EDL2, mais elle est plus compli-
quée et n’est pas au programme.

Dans ce chapitre, on se restreint donc à déterminer des solutions particulières d’EDL2 quand
le second membre c : x 7→ c(x) est de la forme :

� x 7→ Aeλx, avec A, λ ∈ C des complexes.
� x 7→ B cos(ωx) ou x 7→ B sin(ωx), avec B,ω ∈ R des réels.

Méthode 61 (Recherche d’une solution particulière pour certaines EDL2)
Soit (E) une EDL d’ordre 2 de la forme y′′(x) + ay′(x) + by(x) = Aeλx, avec A, λ ∈ C des
complexes.
Pour déterminer une solution particulière f de cette équation, on distingue 3 cas.

1. Si λ n’est pas solution de l’équation caractéristique x2 + ax+ b = 0, on cherche f de la
forme f : x 7→ α.eλx.
On détermine la valeur de α ∈ C en remplaçant cette expression dans l’équation (E).
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2. Si λ est une racine simple de l’équation caractéristique x2 + ax + b = 0, on cherche f
de la forme f : x 7→ α.xeλx.
On détermine la valeur de α ∈ C en remplaçant f dans l’équation (E).

3. Si λ est une racine double de l’équation caractéristique x2 + ax + b = 0, on cherche f
de la forme f : x 7→ α.x2eλx.
On détermine la valeur de α ∈ C en remplaçant f dans l’équation (E).

Démonstration — Sur feuille.

Méthode 62 (Recherche d’une solution particulière pour certaines EDL2)
Soit (E) une EDL d’ordre 2 de la forme (E) : y′′(x) + ay′(x) + by(x) = B cos(ωx) ou y′′(x) +
ay′(x) + by(x) = B sin(ωx), avec B,ω ∈ R des réels.
Pour déterminer une solution particulière f de cette équation :

1. On détermine une solution particulière fp de l’EDL à coeffs complexes y′′(x) + ay′(x) +
by(x) = Beiωx.

2. La fonction f : x 7→ Re(fp(x)) est une solution particulière de (E) : y′′(x) + ay′(x) +
by(x) = B cos(ωx).

3. La fonction f : x 7→ Im(fp(x)) est une solution particulière de (E) : y′′(x) + ay′(x) +
by(x) = B sin(ωx).

Exercice 12 — Déterminer une solution particulière aux équations différentielles :

1. y′′ − 3y′ + 2y = 3ex

2. y′′ − 3y′ + 2y = −5e−x

3. y′′ − 3y′ + 2y = cos(x)

Le principe de superposition est aussi valable pour les EDL2, ce qui permet de trouver une
solution particulière (et de résoudre) à davantage d’EDL2.

Théorème 63 (Principe de superposition)
Soit I un intervalle. Soient a, b ∈ C, et c1, c2 : I → C des fonctions continues. Soit k ∈ C.
Soient f1, f2 des solutions particulières aux EDL2 (E∞) : y′′(x) + a.y′(x) + b.y(x) = c1(x),
(E∈) : y′′(x) + a.y′(x) + b.y(x) = c2(x) une EDL2.
Alors, la fonction f = f1+k.f2 est une solution particulière de l’équation (E) : y′′(x)+a.y′(x)+
b.y(x) = c1(x) + k.c2(x).
Démonstration — Sur feuille. Il faut vérifier les calculs.

Exercice 13 — Déterminer une solution particulière de l’équation différentielle (E) : y′′(x)−
3y′(x) + 2y(x) = 3ex − 5e−x + cos(x).

8.3 Résolution générale

Pour résoudre une EDL2, le résultat général reste identique à celui des EDL1.

Théorème 64 (Existence de solutions)
Soit (E) : y′′ + a.y′ + by = c(x) une EDL d’ordre 2 à coefficients constants.
Alors l’équation (E) admet des solutions.
Démonstration —(Hors programme).

Théorème 65 (Solutions d’une EDL2 à coeffs constants)
Soit (E) : y′′ + a.y′ + b.y = c(x) une EDL2 à coeffs constants.
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Soit fp une solution particulière de (E). Soit : mathcalS0 des solutions de l’équation homogène
associée y′′ + a.y′ + b.y = 0.
Alors, l’ensemble des solutions de (E) noté S est :

S = {fp + f, avec f ∈ S0}.

Démonstration — Sur feuille. On utilise les résultats précédents (existence d’une solution par-
ticulière, linéarité, solutions de l’équation homogène associée).

On peut donc donner une méthode générale de résolution d’une EDL d’ordre 2 à coefficients
constants.

Méthode 66 (Résoudre une EDL2 à coeffs constants)
Soit (E) : y′′ + a.y′ + by = c(x) une EDL d’ordre 2 à coefficients constants. Pour déterminer
l’ensemble des solutions de (E).

1. On résoud l’équation homogène associée (E0) y′′ + a.y′ + by = 0 associée à (E).
Cela utilise l’équation caractéristique x2 + ax+ b = 0.

2. On détermine une solution particulière fp de (E).
Soit, on trouve une ”solution évidente”. (Utilisable parfois)
Si la fonction c s’écrit comme une somme de fonction plus simples, on utilise le principe
de superposition. (Utilisable parfois)
Si c(x) = Aeλx ou B cos(ω.x) ou B sin(ω.x), on trouve une solution particulière avec les
méthodes spécifiques pour ces fonctions.

3. Soit S0 l’ensemble des solutions de (E0).
Alors, l’ensemble des solution de (E) est

S = {fp + f, avec f ∈ S0}.

On rencontre également beaucoup d’EDL d’ordre 2 à coefficients constants en Physique
et S.I..
Leur forme générale est y′′(t) + 2λy′(t) + ω2

0y(x) = f(t), avec :
� y est une grandeur évoluant au cours du temps.
� λ ≥ 0 modélise les phénomènes qui dissipent de l’énergie, on l’appelle le coeffi-
cient d’amortissement.

� la constante ω0 > 0 est la pulsation propre.
� le second membre f représente l’action extérieure sur le système.

Application à la Physique

Exercice 14 — On considère un circuit RLC en série. L’équation d’évolution de la charge q
du condensateur est :

U =
q

C
+R

dq

dt
+ L

d2q

dt2

1. Déterminer le coefficient d’amortissement du système ainsi que sa pulsation propre.

2. Donner l’expression de la charge q en fonction du temps (Résoudre l’équation différen-
tielle).

8.4 Problème de Cauchy

On termine cette étude des EDL2 par le cas des problèmes de Cauchy (une EDL2 avec des
conditions initiales). Pour une EDL1, on avait une condition initiale (f(x0) = y0). Pour une
EDL2, on a deux conditions initiales (f(x0) = y0 et f ′(x0) = y1).
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Théorème 67 (Problème de Cauchy)
Soit (E) : y′′(x) + a.y′(x) + by(x) = c(x) une EDL2 à coefficients constants sur un intervalle I.
Soient x0 ∈ I et y0, y1 ∈ C deux constantes.
Alors, il existe une unique solution f de l’équation (E) telle que f(x0) = y0 et f ′(x0) = y1.
Démonstration —

Exercice 15 — Déterminer l’unique solution f de l’équation différentielle y′′(x) − 3y′(x) +
2y(x) = 3ex − 5e−x + cos(x), telle que f(0) = 0 et f ′(0) = 1.

Bilan du contenu nécessaire à mâıtriser :
— Pour f dérivable sur un intervalle I, on a f ′ = 0 ssi f est constante.
— Les primitives et EDL se résolvent sur un intervalle.
— Primitive F d’une fonction f . Une fonction f a plusieurs primitives. Sur un intervalle,

toutes les primitive de f diffèrent à une constante près.
— Primitives des fonctions usuelles x 7→ xn, x 7→ xa, 1x , exp, ln, cos, sin, ch, sh.
— Déterminer une primitive en identifiant une dérivée.

Utilisation des dérivées de composées usuelles : (ln(|u|)′ = u′

u , (u2)′ = 2u′u, (un)′ =
nu′un−1, (ua)′ = au′ua−1, (eu)′ = u′eu.

— Théorème d’existence d’une primitive : Toutes les fonctions continues sur un intervalle
ont une primitive. On l’écrit x 7→

∫ x
a f(t)dt.

— Théorème de Newton-Leibniz :
∫ b
a f(t)dt = [F (t)]ba = F (b)− F (a).

Utilisation pour calculer des intégrales à partir de primitives.
— Méthode d’intégration par parties (IPP ) :

∫
u′v = [uv] −

∫
uv′, pour déterminer des

primitives et des intégrales.
Méthode basée sur la dérivée d’un produit ((uv)′ = u′v + uv′). On utilise l’IPP pour
obtenir une fonction plus simple à primitiver.

— Méthode du changement de variables : u = f(x), du = f ′(x)dx, pour déterminer des
primitives et des intégrales.
Pour les intégrales, il faut vérifier que f ′(x) ne s’annule pas sur ]a, b[. Pour les primi-
tives, si on doit utiliser x = f−1(u), on fera attention au domaine de définition de la
primitive après les calculs effectués.

— Primitives des fonctions de la forme x 7→ 1
ax2+bx+c

selon le signe du discriminant ∆ =

b2 − 4ac. Cas 1
a(x−r1)(x−r2)

, cas 1
(cx+d)2

, cas 1
λ((cx+d)2+1)

.

— Définition des ED, EDL, EDLH, EDLcc, EDL1 et EDL2.
— Solution particulière d’une EDL. Savoir tester des fonctions ”simples” pour trouver une

solution ”́evidente”.
— EDL1 : Résolution des EDL1H (y′(x) + a(x)y(x) = 0).

Résolution des EDL1 (y
′(x)+a(x)y(x) = b(x)) via les solutions de l’EHA et une solution

particulière.
Méthode de variation de la constante pour trouver une solution particulière.
Problème de Cauchy (conditions initiales). Savoir déterminer l’unique solution d’un
problème de Cauchy.

— EDL2 : Résolution des EDL2Hcc (y′′(x)+ay′(x)+by(x) = 0). Equation caractéristique
x2 + ax+ b = 0.
Résolution des EDL2cc homogènes (y′′(x) + ay′(x) + by(x) = c(x)) via les solutions de
l’EHA et une solution particulière. Solution particulière dans le cas c(x) = λ exp(rx).
Problème de Cauchy (conditions initiales). Savoir déterminer l’unique solution d’un
problème de Cauchy.
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