

CONTROL'X

DOCUMENTS RESSOURCES

Table des matières

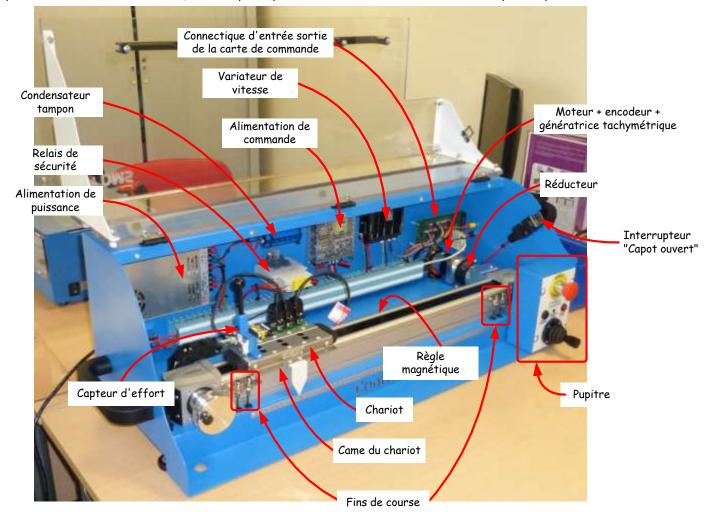
Fiche 1	Présentation Générale	3
Descri	ption générale	3
Fiche 2	Mise en service – Control'Drive	4
Pilota	ge en boucle fermée : commande de la position du chariot	4
Pilota	ge en boucle ouverte : pilotage de la tension d'alimentation du moteur	4
Fiche 3	Réaliser une mesure avec Control'Drive	5
Pilota	ge en boucle fermée : commande de la position du chariot	5
Pilota	ge en boucle ouverte : commande de la tension d'alimentation du moteur	5
Gestio	on de l'affichage des courbes	6
Fiche 4	Diagramme des exigences	7
Fiche 5	Composants	8
Mote	ur Sanyo T511-T012-EL8	8
Génér	atrice tachymétrique Sanyo	10
Codeu	ır incrémental Sanyo	10
Réduc	teur Neugart PLE 60	10
Joint o	d'accouplement	12
Poulie	s crantées	13
Courre	pie	13
Axe So	chneider PAS 42 B	14
Variat	eur de vitesse Maxon ESCON 50/5	15
Carte	de commande NI PCIe 6321	16

Joystick APEM série 3000	17
Capteur de position magnétostrictif ASM Posimag PMIS3	18
Capteur d'effort	18
Capteur de distance SHARP GP2Y0A41SK0F	19
Ressort SDEC T/22/ID	10

Fiche 1 PRESENTATION GENERALE

Description générale

Le Control'X est un axe numérique asservi pouvant être présent dans plusieurs domaines industriels :

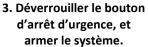


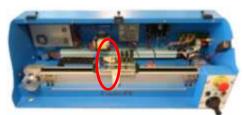
Axe d'un portique de machine automatisée

Axe d'un robot collaboratif

L'axe linéaire peut aussi être celui qu'on retrouverait sur une machine-outil.

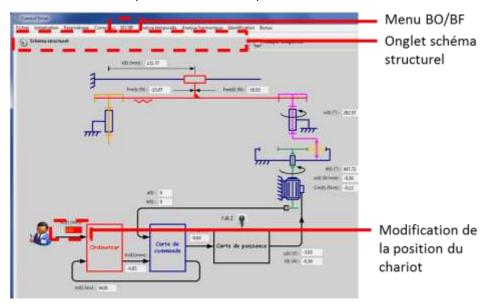
Il pourrait aussi être celui d'un robot collaboratif (Cobot). Un Cobot est un robot permettant d'assister un opérateur en le soulageant du poids de l'outil. Par exemple, dans la photo ci-dessus, un axe numérique aide l'opérateur à porter l'outil et à positionner l'outil. Dans ce cadre, le Cobot participe à la lutte contre les troubles musculo squelettiques.




Fiche 2 MISE EN SERVICE - CONTROL'DRIVE

1. Allumer le système.

2. S'assurer (capot fermée) que le chariot est en position « milieu ». Vous pourrez pour cela utiliser la poignée.



- □ Lancer le logiciel « Control'Drive ». Control Drive
- ☐ Aller dans l'onglet « Schéma structurel ».

Pilotage en boucle fermée : commande de la position du chariot

- Menu BO/BF ➤ Boucle fermée
- ☐ Appuyer sur les flèches haut ou bas pour observer le déplacement de l'axe.
 - Pour réduire le déplacement positionner le curseur au niveau des dizaines ou des unités et appuyer sur haut ou bas (ou faire tourner la molette de la souris.)
- Passer sur les différents blocs pour observer les composants.

Pilotage en boucle ouverte : pilotage de la tension d'alimentation du moteur

- Menu BO/BF ➤ Boucle ouverte
- ☐ Appuyer sur les flèches haut ou bas et observer le déplacement de l'axe.
 - Que se passe -t-il pour une commande de -3V ?
 - Que se passe-t-il pour une commande de +3V ?
- ☐ Passer sur les différents blocs pour observer les composants.

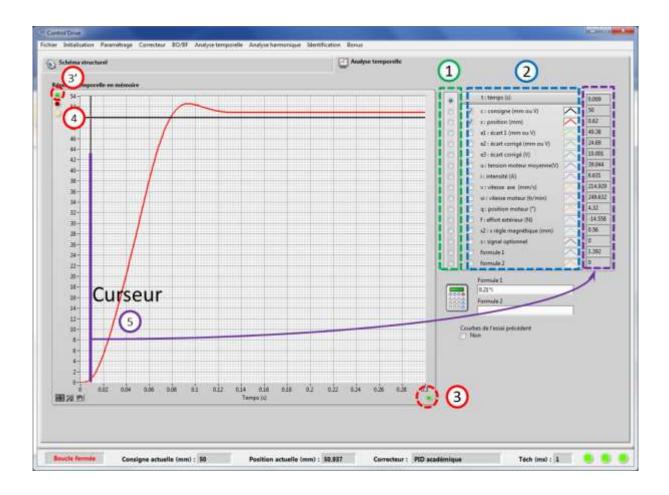
Fiche 3 Realiser une mesure avec Control'Drive

- ☐ Lancer le logiciel « Control'Drive ».
- ☐ Aller dans **l'onglet** « Analyse temporelle ».

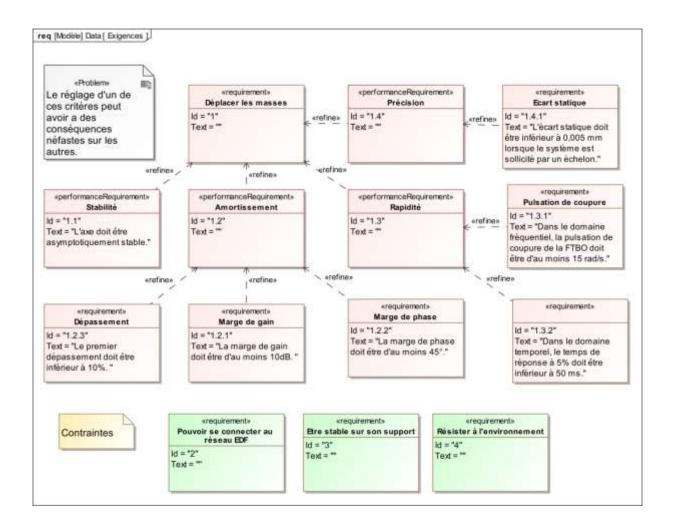
Pilotage en boucle fermée : commande de la position du chariot

- Menu BO/BF ➤ Boucle fermée
- ☐ Aller dans le **menu** Analyse temporelle ▶ Définir entrée.
- Dans la fenêtre qui choisir une sollicitation, par exemple « Échelon ».
 - Configurer la durée de l'essai :
 - Position souhaitée : 50 mm.
 - Durée de l'essai : 0,3 s.
 - Sur le pupitre : appuyer sur réinitialiser pour mettre le chariot en position initiale.
 - Appuyer sur le bouton « Lancer mouvement ».

menu Analyse temporelle ▶ Définir entrée


Pilotage en boucle ouverte : commande de la tension d'alimentation du moteur

- Menu BO/BF ➤ Boucle ouverte
- ☐ Aller dans le **menu** Analyse temporelle ▶ Définir entrée.
- ☐ Dans la fenêtre qui choisir une sollicitation, par exemple « Echelon ».
 - Configurer la durée de l'essai :
 - Tension: 5V.
 - Durée de l'essai : 0,3 s.
 - Sur le pupitre : appuyer sur réinitialiser pour mettre le chariot en position initiale (ou bouger le chariot avec la poignée).
 - Appuyer sur le bouton « Lancer mouvement ».


Gestion de l'affichage des courbes

- 1. Choix de l'abscisse
- 2. Choix de l'ordonnée
- 3. Activation de l'échelle automatique (sur l'abscisse 3 et sur l'ordonnée 3').
- 4. Visualisation des échantillons mesurés
- 5. Données en un point

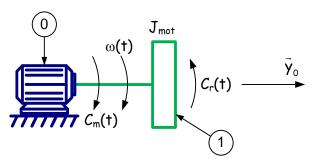
Fiche 4 DIAGRAMME DES EXIGENCES

Fiche 5 COMPOSANTS

Moteur Sanyo T511-T012-EL8

Caractéristique	Température	Symbole	Unité	Valeur	Observations
Puissance nominale	**	P_{nom}	W	110	
Tension nominale	**	U_nom	V	75	
Couple nominal	**	C_{nom}	N.m	0.34	
Courant nominal	**	I _{nom}	А	2.0	
Vitesse nominale	**	ω_{nom}	tr/min	3000	soit 314 rad/s
Couple maxi en continu	**	C_cont	N.m	0.42	
Couple maxi instantané	**	C _{max}	N.m	3.4	
Courant maxi en continu	**	I _{cont}	Α	2.2	
Courant maxi instantané	**	I _{max}	А	18	
Vitesse maximale			tr/min	5000	soit 523 rad/s
Couple de friction	*	$C_{frott-moteur}$	N.m	0.022	
Accélération maxi	**		rad/s ²	91.9×10 ³	
instantanée					
Coefficient de frottement	*	$f_{\omega\text{-moteur}}$	N.m/min	0.013×10 ⁻³	soit 0.124e-3
visqueux					N.m/(rad/s)
Constante de couple	*	k ou k _c	N.m/A	0.21	
Constante de force contre	*	k ou k _e	V/min	21.8×10 ⁻³	soit 0.2083V/(rad/s)
électromotrice					
Moment d'inertie du rotor	*	J_{mot}	kg.m²	0.037×10 ⁻³	
Résistance d'induit	*	r	Ω	5.1	
Inductance d'induit	*	L	mH	3.2	
Constante de temps	*	$\tau_{\text{m\'eca}}$	ms	4.3	
mécanique					
Constante de temps	*	$ au_{ ext{\'elec}}$	ms	0.63	
électrique	4.4				
Constante de temps	**		min	30	
thermique	4.4				
Résistance thermique	**		K/W	2.4	
Température limite	**		°C	105	

- Valeur numérique correspondant à une température ambiante de 25°C
- * * Valeur numérique correspondant à la température maxi de 105 °C


Un dépassement de l'intensité maxi de 18 A peut entraîner une démagnétisation irréversible des aimants permanents.

Caractéristiques sous la tension nominale de 75 V rajoutées à celles données par le constructeur : Calculées à partir d'un modèle avec frottements secs et visqueux du moteur seul

Ctrl + clic pour revenir au sommaire

Modèle utilisé:

Equation de mouvement :

$$C_{\text{m-utile}}(\dagger)$$
 - $C_{\text{r}}(\dagger)$ = $J_{\text{éq}}$. $\dot{\omega}(\dagger)$ où $C_{\text{m-utile}}$ = k_{c} . i - $f_{\omega\text{-moteur}}$. ω - $C_{\text{frott-moteur}}$ - J_{mot} . $\dot{\omega}(\dagger)$

Equation électrique:

$$u(t) = r.i(t) + L. \frac{di(t)}{dt} + e'(t)$$

Equations électromécaniques :

$$C_{\rm m}(t)$$
 = $k_{\rm c}.i(t)$ et e'(t) = $k_{\rm e}.\omega(t)$

On trouve alors les valeurs suivantes :

Caractéristique	Symbole	Unité	Valeur	Observations
Vitesse à vide	ω_{max}	tr/min	3361	soit 352 rad/s
Courant arbre bloqué	i _{max}	Α	14.7	
Courant à vide	i _{vide}	Α	0.31	
Courant nominal	i _{nom}	Α	1.88	
Couple arbre bloqué	C_{max}	N.m	3.07	
Puissance nominale	P_{nom}	W	107	
Puissance maxi	P_{max}	W	270	
Rendement maxi	η_{max}	%	75	

Génératrice tachymétrique Sanyo

Sommaire

Caractéristique	Température	Symbole	Unité	Valeur	Observations
Tension de sortie par tr/min	*	k _g	V/(tr/min)	7×10 ⁻³	soit 7 V/(1000tr/min)
				10%	0.0669 V/(rad/s)
Ondulation effective (rms)	*		%	1	
Ondulation crête à crête	*		%	3	
Linéarité	*		%	1	
Résistance aux bornes	*		Ω	26	
Inductance aux bornes	*		mH	4.1	
Résistance de charge mini	*		kΩ	10	
Moment d'inertie du rotor		J_g	kg.m²	0.012×10 ⁻³	

^{*} Valeur numérique correspondant à une température ambiante de 25°C

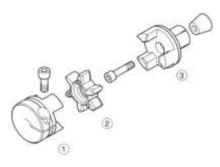
Codeur incrémental Sanyo

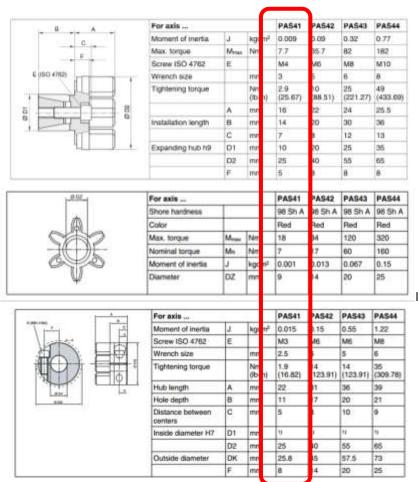
Caractéristique	Sym bole	Unité	Valeur	Observations
Nombre d'implusions par tour	n		1000	4 incréments par impulsion
Circuiterie de sortie			Line driver	
Nombre de canaux			3	
Tension d'entrée		V DC	+5 ±10%	
Intensité consommée		mA	160 max	
Tensions de sortie		V	V _{OH} = 2.4 min	
			$V_{OL} = 0.54 \text{ max à } I_0 = 20 \text{ mA}$	
Courant de sortie		mA	20 max	
Réponse en fréquence		kHz	0 à 300	
Rapport cyclique des impulsions			$T_1 = 1/2.T_0 \pm 1/8.T_0$	
Différence de phase			$T_2 \text{ à } T_5 = 1/4.T_0 \pm 1/8.T_0$	Quadrature
Couplage			$(T_{0 \text{ max}} - T_{0 \text{ min}})/T_{0} < 0.08$	
Température de travail		°C	-10 à + 85	
Elément électroluminescent émetteur			Diode infrarouge	
Elément électroluminescent récepteur			Photodiode	
Moment d'inertie	J _e	kg.m ²	8×10 ⁻⁸	

Réducteur Neugart PLE 60

Caractéristique	Symbole	Unité	Valeur	Observations	
-----------------	---------	-------	--------	--------------	--

^{* *} Valeur numérique correspondant à la température maxi de 105 °C




•				
Nombre d'étage			1	Train épicycloïdal
Rapport de réduction	1/i		1/3	$(\omega_{sortie}/\omega_{entrée})$
Couple de sortie nomina	I	N.m	28	
Couple de sortie max		N.m	45	
Couple d'urgence		N.m	66	Autorisé 1000 fois
Jeu angulaire		Arcmin	< 10	Ramené sur la sortie (à priori)
Vitesse d'entrée max		tr/min	13000	
F _R max pour 300000 h		N	340	
F _A max pour 300000 h		N	450	
F _R max		N	700	
F _A max		N	800	
Rigidité en torsion		N.m/arcmin	2.3	7.907×10 ³ N.m/rad
Masse		Kg	0.9	
Moment d'inertie	J _r	kg.cm²	0.135	0.135.10 ⁻⁴ : ramené sur l'entrée
Rendement		%	97	
Durée de vie		Н	30000	
Température	de	°C	-25 à +90	
fonctionnement				

Joint d'accouplement

Caractéristique	Symbole	Unité	Valeur
Туре			
Couple maxi transmissible			
Moment d'inertie	J _a	kg.m ²	2.53×10 ⁻⁵
Raideur en torsion			
Raideur en flexion			
Raideur en cisaillement			
Raideur en traction compression			

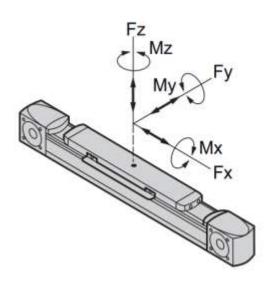
Poulies crantées

Caractéristique	Symbole	Unité	Valeur	Observations
Туре				25 HTD 5M
Largeur		mm	25	
Pas	p*	mm	5	
Nombre de dents	Z		31	
Rayon primitif	R	mm	24.67	Avance de 155 mm/tour
Avance par tour	a	mm	155	
Moment d'inertie	Jp	kg.m²	4.2.10 ⁻⁵	Calculé avec SolidWorks
				(aluminium)

Courroie

Caractéristique	Symbole	Unité	Valeur	Observations
Туре				25 HTD 5M
Largeur		mm	25	
Pas	p*	mm	5	
Longueur primitive de courroie	I _C	mm	1670	
Masse linéique	λ_{C}	kg/m	0.096	
Masse	m _c	kg	0.16	
Raideur spécifique	r _s	N	0.572×10 ⁶	*
Tension recommandée		N	[570, 710]	

^{*} En notant k_C la raideur (N/m) d'une longueur l (m) de courroie, la raideur spécifique r_S (N) est le produit $r_S = k_C$.


La raideur k_c (N/m) d'une longueur I (m) de courroie vaut donc : $k_c = \frac{r_s}{I}$

Axe Schneider PAS 42 B

Sommaire

Caractéristique	Symbole	Unité	Valeur	Observations
Type de guidage du chariot				A galets sur roulements*
Masse du chariot	М	kg	0.9	1.74 kg avec tous les accessoires montés **
Charge typique		kg	12	
Vitesse maxi		m/s	8	
Accélération maxi		m/s²	20	
Couple d'entraînement maxi		N.m	20	
Force d'entraînement maxi		N	800	
Force maxi selon Y		N	660	
Force maxi selon Y		N	430	
Couple maxi selon X		N.m	9	
Couple maxi selon Y		N.m	18	
Couple maxi selon Z		N.m	28	
Course utile		mm	450	
Répétabilité		mm	±0.05	
Section transversale		mm	60×60	
Durée de vie		km	30000	
Masse de l'axe à course nulle		kg	7.5	
Masse par mètre de course		kg	5.6	

- * Roulements de poulie crantée : 6907 LU : Φ 35-55-10
- ** Chariot + accessoires + ensemble capteur d'effort (ci-contre)

Variateur de vitesse Maxon ESCON 50/5

Caractéristique	Symbole	Unité	Valeur	Observations
Tension nominale de service	V_{cc}	V	[10, 50]	Réglée à 40.8 V
Tension maximum de sortie		V	0.98.V _{cc}	C'est la tension de saturation : 40 V
Courant de sortie max permanent		Α	5	
Courant de sortie max instantané		Α	15	
Gain		В	4	Amplificateur de gain pur dans le mode de
				fonctionnement réglé (variateur de vitesse)
Fréquence du PWM		kHz	53.6	
Fréquence d'échantillonnage du		kHz	53.6	
régulateur de courant PI				
Fréquence d'échantillonnage du		kHz	5.36	
régulateur de vitesse PI				
Rendement maxi		%	95	
Self de lissage intégrée		μΗ	30	
Entrées numériques			2	
Entrées/Sorties numériques			2	
Entrées analogiques			2	
Résolution entrées analogiques		bits	12	
Gamme entrées analogiques		V	[-10, 10]	
Sorties analogiques			2	
Résolution sorties analogiques		bits	12	
Gamme sorties analogiques		V	[-4, 4]	

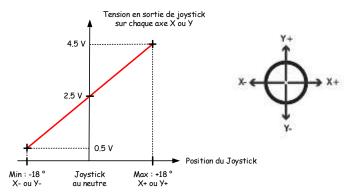
Carte de commande NI PCle 6321

Caractéristique	Unité	Valeur	Observations
Entrées analogiques	8 différentielles ou		
		16 asymétriques	
Fréquence max d'échantillonnage	kéch./s	250	Pour l'ensemble des voies.
			(Un seul CAN avec entrées multiplexées)
Résolution	bits	16	
Gamme maximum de tension	V	[-10, 10]	
Précision	mV	2.2	
Gamme maximum de tension	V	[-0.2, 0.2]	
Précision	μV	69	
Nombre de gammes		4	

Sortie analogiques		2	
Résolution	bits	16	
Gamme maximum de tension	V	[-10, 10]	C'est la tension de saturation
Précision	mV	3.27	
Taux de rafraîchissement	kéch./s	900	Pour une voie. (840 si deux voies)
Courant fourni sur une voie	mA	5	

Entrées /sorties numériques bidirectionnelles		24	
Fréquence d'horloge maxi	MHz	1	
Gamme de tension	V	[0, 5]	
Niveaux logiques		TTL	

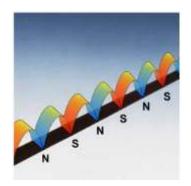
Compteurs-Timers		4	
Fréquence maxi	MHz	100	
Taille du compteur	bits	32	
Niveau logique	V	TTL	

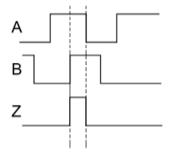


Caractéristique	Unité	Valeur	Observations
Tension d'entrée	V AC	124-370	
Tension de sortie	V DC	48	Réglable entre 41 et 56 V, réglé sur 40.8 V
Courant nominal	А	6.7	
Puissance nominale	W	321.6	
Ondulation et bruit max	V	240 mV	
Stabilité de la tension de sortie		± 1%	
Rendement		90 %	
Surcharge autorisée		105 % - 135%	De la puissance nominale
Surtension autorisée	V	58.4 - 68	

Joystick APEM série 3000

Le joystick APEM utilisé est un joystick 2 axes sans contact à technologie à effet Hall. Son comportement se rapproche toutefois d'un simple joystick à potentiomètre alimenté en 0, +5V.


Caractéristique	Unité	Valeur	Observations
Course	0	36°	
Tension d'alimentation V	V	5 ± 0.5	
Gain	V	\pm 40% \times V = \pm 2	
Tension au neutre	V	2.5 \pm 5% $ imes$ Gain	
		$\textbf{2.5} \pm \textbf{0.1}$	
Type de capteur			Effet Hall



Capteur de position magnétostrictif ASM Posimag PMIS3

Réf de la tête de lecture : PMIS3-50-10-100KHZ-TTL-Z1-1M-S Réf de la règle magnétique : PMIB3-50N-Z680-R/340

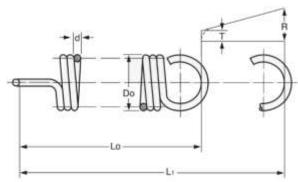
Le canal Z (top 0) est positionné à mi-course du chariot de Control'X et est accessible sur l'entrée P1.4 de la carte NI. (National Instrument).

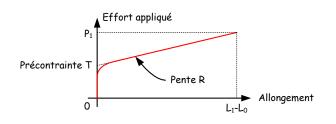
Caractéristique	Unité	Valeur	Observations
Nombre de canaux		3	A et B en quadrature,
			Z : top de référence
Tension d'alimentation	V DC	5	± 5%
Courant à vide	mA	50-300	
Période magnétique	mm	5	
Entrefer	mm	0.1-2	
Résolution	μm	10	(avec interpolation ×4)
Vitesse max	m/s	3.2	avec fréquence de 100 kHz
Sorties			TTL, RS422
Linéarité		30μm ± 40μm/m	
Répétabilité	digit	1	

Capteur d'effort

Caractéristique	Unité	Valeur	Observations
Capacité maxi	kg	20	
Surcharge maxi	kg	24	avant défaillance
Répétabilité	g	± 10	maxi
Non linéarité	g	10	maxi
Hystérésis	g	10	maxi
Offset	g	± 300	lorsqu'aucun effort n'est appliqué
Tension d'alimentation	V DC	5	maxi
Impédance de sortie	kΩ	1	
Tension de sortie nominale	mV/V	1	1mV par V de tension d'alimentation sous la charge
			maxi de 20 kg : Pour une alimentation en 5V, on
			recueille aux bornes du pont 5mV sous 20 kg.
Erreur sur la tension de sortie	μV/V	± 150	

Le montage en pont de Wheastone et la disposition des jauges de déformation font que le capteur n'est sensible qu'à l'effort de cisaillement subit par la poutre et non au moment de flexion induit par l'effort exercé. L'information recueillie aux bornes du pont ne dépend donc pas du point d'application de la force horizontale exercée.


=


Capteur de distance SHARP GP2Y0A41SK0F

Caractéristique	Unité	Valeur	Observations
Technologie			Infra-rouge
Plage de mesure	cm	4 - 30	
Alimentation	V DC	4.5 - 5.5	
Durée de mesure	ms	16.5 ± 3.7	
Intensité moyenne consommée	mA	12	

Ressort SPEC T42240

Caractéristique	Symbole	Unité	Valeur	Observations
Туре				Ressort de traction
Matériau				lnox
Diamètre extérieur	D_0	mm	12	
Diamètre du fil	d	mm	1.8	
Longueur libre	L ₀	mm	290	
Longueur de l'extension maximum	L_1	mm	465	Avant déformation plastique
Charge à L ₁	P_1	N	117.45	
Tension initiale	Т	N	17.85	Le ressort est à spires jointives, il est
				légèrement précontraint
Raideur	R	N/mm	0.57	

N.B.: La tension initiale est donnée à titre indicatif et peut varier d'un ressort à l'autre.