Cycle 2: Approfondissements 1

TD 9 Engin flottant mobile de franchissement de voie fluviale Loi E/S par la fermeture géométrique

Le contexte et les informations nécessaires sont dans le TD 7.1.

L'étude proposée porte sur la **vérification des choix d'implantation des actionneurs** conçus pour assurer le déploiement des passerelles visibles pages 6 et 7 (le schéma cinématique est en couleur sur le Drive) :

- le déploiement de la passerelle 5 est réalisé grâce à deux vérins hydrauliques Ve(1+2)et Vi (3+4).
- Le déploiement de la passerelle 9 est réalisé grâce à un **moteur hydraulique M (6+7)** et un système visécrou.

On donne:

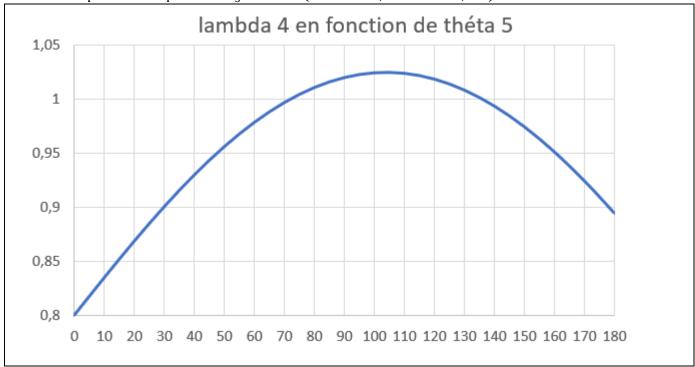
$\overrightarrow{AB} = \lambda_2 \cdot \vec{y}_2$ $\overrightarrow{ED} = \lambda_4 \cdot \vec{y}_4$	$\theta_1 = (\vec{x}_0; \vec{x}_1)$	$\theta_m = (\vec{y}_6; \vec{y}_7)$	$\overrightarrow{BC} = \overrightarrow{CD} = d.\vec{x}_5; \overrightarrow{AC} = d.\vec{x}_0 + a.\vec{y}_0$
	$\theta_3 = (\vec{x}_0; \vec{x}_3)$	$\theta_9 = (\vec{x}_5; \vec{x}_9)$	$\overrightarrow{CE} = d.\vec{x}_0 - b.\vec{y}_0; \overrightarrow{DG} = d.\vec{x}_5 + e.\vec{y}_5$
$\overrightarrow{GH} = \lambda_8 \cdot \vec{x}_8$	$\theta_5 = (\vec{x}_0; \vec{x}_5)$	$\theta_6 = (\vec{x}_5; \vec{x}_6)$	$\overrightarrow{DF} = L.\vec{x}_5; \overrightarrow{FH} = d.\vec{x}_9; \overrightarrow{FK} = L.\vec{x}_9$

Déploiement de la passerelle 5 ($\theta_5(t=0)=0^\circ; \theta_5(t=30)=180^\circ$)

Loi d'entrée-sortie de l'actionneur Vi : $\lambda_4 = f^{-1}(\theta_5)$

- Q0. Identifier l'entrée et la sortie pour cette chaine cinématique
- Q1. Ecrire une fermeture géométrique qui permette d'obtenir le modèle géométrique direct (MGI) $\lambda_4 = f^{-1}(\theta_5)$

La courbe représentative pour $0 \le \theta_5 \le 180^\circ$ (avec d=0.2 m et b=0.8 m) est la suivante :



Q2. La courbe obtenue présente un maximum noté $(\theta_{5i\ crit}; \lambda_{4\ crit})$. En analysant le schéma cinématique, indiquer à quelle configuration particulière correspond $\theta_{5i\ crit}$. Montrer que la fermeture géométrique peut aussi s'écrire :

$$\cos(\theta_5+\varphi_i) = \frac{\lambda_4^2 - 2.d^2 - b^2}{-2.d.\sqrt{d^2 + b^2}} et \ pr\'{e}ciser \ les \ valeurs \ de \ \lambda_{4 \ crit} \ ; \ \theta_{5i \ crit} et \ \varphi_i.$$

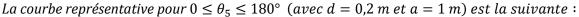
Q3. Considérant le domaine de variation de θ_5 , quelle précaution doit-on prendre pour avoir le modèle géométrique inverse (MGD) $\theta_5 = f(\lambda_4)$? Préciser cette relation.

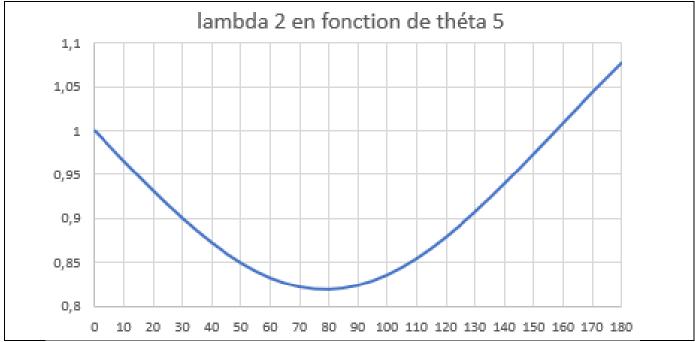
Cycle 2: Approfondissements 1

La présence de cette singularité géométrique crée une incertitude sur la suite du mouvement de la passerelle 5. En effet, après $\theta_5 = \theta_{5i\ crit}$, la tige du vérin **Vi** doit re-rentrer mais on ne sait pas si la passerelle 5 va continuer dans les θ_5 croissants ou décroissants. *En effet, la fonction f n'est pas une bijection et certain* λ_4 *ont deux antécédents* θ_5 . Cette singularité justifie la présence du vérin **Ve** qui, par la sortie de sa tige, va imposer que θ_5 continue de croître. La rotation de la passerelle 5 est donc dans un premier temps, pour $\theta_5 < \theta_{5i\ crit}$, contrôlée par le vérin **Vi** (phase de sortie de la tige 4) puis dans un second temps (avant que $\theta_5 = \theta_{5i\ crit}$), contrôlée par le vérin **Ve** (phase de sortie de la tige 1).

Loi d'entrée-sortie de l'actionneur Ve : $\lambda_2 = g^{-1}(\theta_5)$

Q4. Ecrire une fermeture géométrique qui permette d'obtenir le modèle géométrique direct (MGI) $\lambda_2 = g^{-1}(\theta_5)$

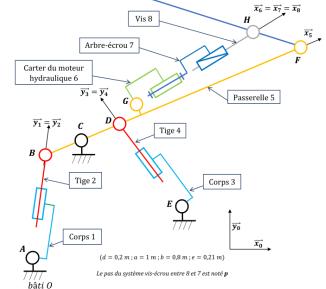




Q5. La courbe obtenue présente un minimum noté $(\theta_{5e\ crit}; \lambda_{2\ crit})$. En analysant le schéma cinématique, indiquer à quelle configuration particulière correspond $\theta_{5e\ crit}$. Calculer $\lambda_{2\ crit}$ et donner un ordre de grandeur de $\theta_{5e\ crit}$ (lecture de la courbe).

Q6. Quelle condition faut-il imposer à $\theta_{5i\ crit}$ et $\theta_{5e\ crit}$ pour que le déploiement de la passerelle 5 soit maîtrisé ? Est-ce vérifié ? Conclure sur le choix d'implantation des actionneurs Vi et Ve.

Q7. Préciser la relation du modèle géométrique inverse (MGD) $\theta_5 = g(\lambda_2)$ en prenant les précautions nécessaires au vu du domaine de variation de θ_5 . Vous préciserez $\theta_{5e\ crit}$ et l'angle φ_e (par analogie avec les questions précédentes).



Page 2 | 2

TD 9 Engin flottant

Déploiement de la passerelle 5 ($\theta_5(t=0)=0^\circ; \theta_5(t=30)=180^\circ$)

Loi d'entrée-sortie de l'actionneur Vi : $\lambda_4 = f(\theta_5)$

Q0. Identifier l'entrée et la sortie.

Sur les deux paramètres sont λ_4 et θ_5 ; λ_4 correspond au paramètre caractérisant le vérin (coordonnée articulaire), donc c'est l'entrée. θ_5 est bien la sortie car cela caractérise la position angulaire au niveau effecteur (coordonnée opérationnelle).

Remarque : en souhaitant exprimer λ_4 en fonction de θ_5 on fournit alors le modèle géométrique **indirect**

Q1. Ecrire une fermeture géométrique qui permette d'obtenir le modèle géométrique inverse (MGI) $\lambda_4 = f(\theta_5)$

Cherche à écrire la bonne **fermeture géométrique** où on veut $\lambda_4 = \lambda_4(\theta_5)$

- 1 : il faut forcément \overrightarrow{ED} pour faire intervenir λ_4 (et il nous reste θ_5 à faire intervenir où θ_5 est l'angle entre \vec{x}_5 et \vec{x}_0)
- 2 : dans les autres vecteurs de la paramétrisation fournie, seul \overrightarrow{CE} fait intervenir le point E
- 3 : donc on peut commencer à écrire $\overrightarrow{ED} = \overrightarrow{EC} + \cdots$ et si on fait le plus simple à savoir finir par \overrightarrow{CD} est-ce que ça marche ? ... oui c'est bon car $\overrightarrow{CD} = d.\vec{x}_5$ donc est selon \vec{x}_5 et que \overrightarrow{EC} est selon \overrightarrow{EC} la base B_0

$$\overrightarrow{ED} = \overrightarrow{EC} + \overrightarrow{CD} \Leftrightarrow \lambda_4 \cdot \vec{y}_4 = -d \cdot \vec{x}_0 + b \cdot \vec{y}_0 + d \cdot \vec{x}_5$$

Et, comme $\vec{x}_5 = \cos(\theta_5) \cdot \vec{x}_0 + \sin(\theta_5) \cdot \vec{y}_0$

On en déduit une relation exprimée dans deux bases :

$$\vec{\lambda}_4 \cdot \vec{y}_4 = (-d + d \cdot \cos(\theta_5)) \cdot \vec{x}_0 + (b + d \cdot \sin(\theta_5)) \cdot \vec{y}_0$$

 \triangle ne pas projeter \vec{y}_4 !!! car sinon cela ferait intervenir d'autre(s) angle(s), ce que l'on ne veut pas

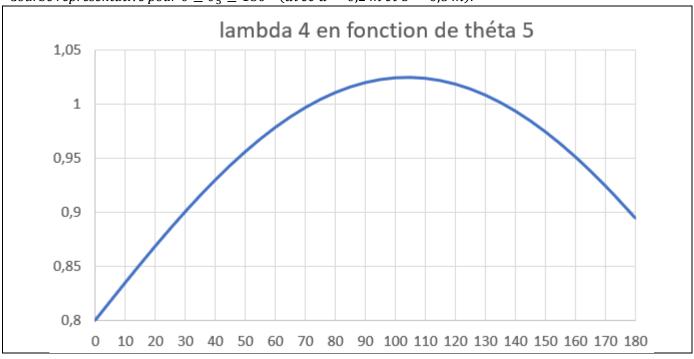
=> calcul de la **norme** :

$$\lambda_4^2 = (-d + d.\cos(\theta_5))^2 + (b + d.\sin(\theta_5))^2$$

Finalement, le MGD est :

$$\lambda_4 = \sqrt{(-d + d.\cos(\theta_5))^2 + (b + d.\sin(\theta_5))^2}$$

Courbe représentative pour $0 \le \theta_5 \le 180$ (avec d = 0.2 m et b = 0.8 m).



Cycle 2: Approfondissements 1 CORRIGE Engin flottant mobile de franchissement de voie fluviale

Q2. La courbe obtenue présente un maximum noté $(\theta_{5i\ crit}; \lambda_{4\ crit})$. En analysant le schéma cinématique, indiquer à quelle configuration particulière correspond $\theta_{5i\ crit}$. Montrer que la fermeture géométrique peut aussi s'écrire:

$$\cos(\theta_5 + \varphi_i) = \frac{\lambda_4^2 - 2.d^2 - b^2}{-2.d\sqrt{d^2 + b^2}}$$
 et préciser les valeurs de $\lambda_{4 crit}$; $\theta_{5i crit}$ et φ_i

 $\cos(\theta_5 + \varphi_i) = \frac{\lambda_4^2 - 2.d^2 - b^2}{-2.d.\sqrt{d^2 + b^2}} \ \ \text{et pr\'eciser les valeurs de $\lambda_{4 \ crit}$; $\theta_{5i \ crit}$ et φ_i.}$ Ce maximum correspond à l'**alignement des points** (dans l'ordre) **E, C et B**. La tige ne peut pas sortir davantage et d'après la courbe : $\theta_{5i\,crit} \approx 105^\circ$ et $\lambda_{4\,crit} \approx 1,025m$

On veut exprimer θ_5 en fonction de λ_4 (modèle géométrique direct). Donc il suffit de reprendre le calcul de la norme effectué en Q1 pour isoler θ_5 et obtenir $\theta_5 = \theta_5$ (λ_4):

$$\lambda_{4}^{2} - 2 \cdot d^{2} - b^{2} = -2 \cdot d \cdot (d \cdot \cos(\theta_{5}) - b \cdot \sin(\theta_{5}))$$

$$\Leftrightarrow \lambda_{4}^{2} - 2 \cdot d^{2} - b^{2} = -2 \cdot d \cdot \sqrt{d^{2} + b^{2}} \cdot (\frac{d}{\sqrt{d^{2} + b^{2}}} \cdot \cos(\theta_{5}) - \frac{b}{\sqrt{d^{2} + b^{2}}} \cdot \sin(\theta_{5}))$$

$$\Leftrightarrow \lambda_{4}^{2} - 2 \cdot d^{2} - b^{2} = -2 \cdot d \cdot \sqrt{d^{2} + b^{2}} \cdot \cos(\theta_{5} + \varphi_{i}) \quad avec \quad \varphi_{i} = \arctan(\frac{b}{d})$$

$$\Leftrightarrow \cos(\theta_{5} + \varphi_{i}) = \frac{\lambda_{4}^{2} - 2 \cdot d^{2} - b^{2}}{-2 \cdot d \cdot \sqrt{d^{2} + b^{2}}} \text{ avec } \varphi_{i} = \arctan(\frac{b}{d}) \quad \text{CQFD}$$

A.N.
$$\varphi_i = 1,326 \ rad \ (75,96^\circ)$$

Lorsque les points sont alignés, on a $\lambda_{4\ crit} = \sqrt{d^2 + b^2} + d = 1.024\ m$ (voir schéma cinématique) et en remplaçant dans la relation donnée dans l'énoncé, on a $\cos(\theta_{5i\ crit} + \varphi_i) = -1$

$$\Leftrightarrow \theta_{5i \, crit} + \varphi_i = \pi$$

$$\Leftrightarrow \theta_{5i \, crit} = \pi - \varphi_i = 180 - 75,96 = \boxed{104,04}^\circ$$
On retrouve bien la valeur de la courbe!

Q3. Considérant le domaine de variation de θ_5 , quelle précaution doit-on prendre pour avoir le modèle géométrique inverse (MGI) $\theta_5 = f^{-1}(\lambda_4)$? Précis<u>er cette relation.</u>

La fonction arccos renvoie des valeurs dans l'intervalle[0; π]. Il faut donc vérifier que $\theta_5 + \varphi_i$ est dans cet intervalle, ce qui est le cas jusqu'à $\theta_5 = \theta_{5i \ crit}$.

$$\theta_5 = \arccos\left(\frac{\lambda_4^2 - 2 \cdot d^2 - b^2}{-2 \cdot d \cdot \sqrt{d^2 + b^2}}\right) - \varphi_i \quad pour \ \lambda_4 \le \lambda_{4 \ crit}$$

La présence de cette singularité géométrique crée une incertitude sur la suite du mouvement de la passerelle 5. En effet, après $\theta_5 = \theta_{5i\ crit}$, la tige du vérin **Vi** doit re-rentrer mais on ne sait pas si la passerelle 5 va continuer dans les θ_5 croissants ou décroissants. En effet, la fonction f n'est pas une bijection et certains λ_4 ont deux antécédents θ_5 . Cette singularité justifie la présence du vérin ${\bf Ve}$ qui, par la sortie de sa tige, va imposer que θ_5 continue de croître. La rotation de la passerelle 5 est donc dans un premier temps, pour $\theta_5 < \theta_{5i\ crit}$, contrôlée par le vérin **Vi** (phase de sortie de la tige 4) puis dans un second temps (avant que $\theta_5 = \theta_{5i \, crit}$), contrôlée par le vérin Ve (phase de sortie de la tige 1).

Loi d'entrée-sortie de l'actionneur Ve : $\lambda_2 = g(\theta_5)$

Q4. Ecrire une fermeture géométrique qui permette d'obtenir le modèle géométrique inverse (MGI) $\lambda_2=g(\theta_5)$

On a la fermeture géométrique suivante : $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} \Leftrightarrow \lambda_2 \cdot \vec{y}_2 = d \cdot \vec{x}_0 + a \cdot \vec{y}_0 - d \cdot \vec{x}_5$ Même raisonnement que précédemment :

$$\lambda_2 \cdot \vec{y}_1 = (d - d \cdot \cos(\theta_5)) \cdot \vec{x}_0 + (a - d \cdot \sin(\theta_5)) \cdot \vec{y}_0$$

Le calcul de la norme donne :

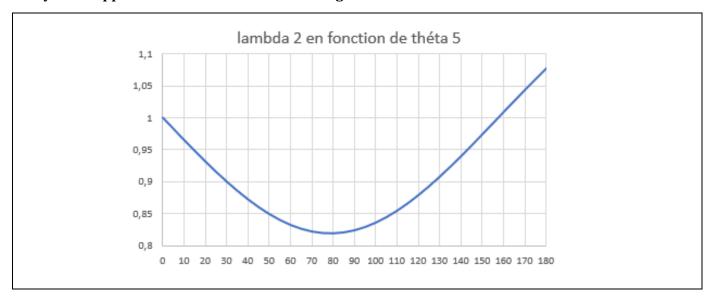
$$\lambda_2^2 = (d - d.\cos(\theta_5))^2 + (a - d.\sin(\theta_5))^2$$

Finalement, le MGD est :

$$\lambda_2 = \sqrt{(d - d.\cos(\theta_5))^2 + (a - d.\sin(\theta_5))^2}$$

Courbe représentative pour $0 \le \theta_5 \le 180^\circ$ (avec d = 0.2 m et a = 1 m).

Cycle 2 : Approfondissements 1 CORRIGE Engin flottant mobile de franchissement de voie fluviale



Q5. La courbe obtenue présente un minimum noté $(\theta_{5e\ crit}; \lambda_{2\ crit})$. En analysant le schéma cinématique, indiquer à quelle configuration particulière correspond $\theta_{5e\ crit}$. Calculer $\lambda_{2\ crit}$ et donner un ordre de grandeur de $\theta_{5e\ crit}$ (lecture de la courbe).

Ce minimum correspond à l'alignement des points (dans l'ordre) A, B et C. La tige 1 ne peut pas rentrer davantage et $\theta_5 \approx 80^{\circ}$ (la passerelle 5 a fait moins d'un quart de tour).

Lorsque les points sont alignés, on a $\lambda_{2\,crit} = \sqrt{d^2 + a^2} - d = 0.82\,m$ (voir schéma cinématique)

Q6. Quelle condition faut-il imposer à $\theta_{5i\ crit}$ et $\theta_{5e\ crit}$ pour que le déploiement de la passerelle 5 soit maîtrisé? Est-ce vérifié? Conclure sur le choix d'implantation des actionneurs Vi et Ve.

Pour que la passerelle 5 soit déployée de façon maîtrisée, il faut que les angles critiques vérifient :

$$\theta_{5e\ crit} < \theta_{5i\ crit}$$

 $\theta_{5e\;crit} < \theta_{5i\;crit}$ (avec une marge de sécurité pour qu'il y ait chevauchement des plages de pilotage)

Le chevauchement est de l'ordre de 25° $(\theta_{5i\ crit} - \theta_{5e\ crit})$. Le choix d'implantation des actionneurs Vi et Ve est satisfaisant.

Q7. Préciser la relation du modèle géométrique inverse (MGI) $\theta_5 = g^{-1}(\lambda_2)$ en prenant les précautions nécessaires au vu du domaine de variation de θ_5 . Vous préciserez $\theta_{5e\ crit}$ et l'angle φ_e (par analogie avec la Q5).

Un calcul similaire à Q2 donne :

$$\begin{split} \lambda_2^2 - 2. \, d^2 - a^2 &= -2. \, d. \sqrt{d^2 + a^2}. \left(\frac{d}{\sqrt{d^2 + a^2}}. \cos(\theta_5) + \frac{a}{\sqrt{d^2 + a^2}}. \sin(\theta_5) \right) \\ \Leftrightarrow \cos(\theta_5 - \varphi_e) &= \frac{\lambda_2^2 - 2. \, d^2 - a^2}{-2. \, d. \sqrt{d^2 + a^2}} \ \ avec \ \ \varphi_e = \arctan\left(\frac{a}{d}\right) \ et \ \ \varphi_e = 78,69^\circ \end{split}$$

Lorsque les points sont alignés, on a $\lambda_{2\,crit}=\sqrt{d^2+a^2}-d=0.82\,m\,(voir\,sch\'ema\,cin\'ematique)$ et en remplaçant dans la relation ci-dessus, on a $\cos(\theta_{5e\ crit}-\varphi_e)=1$

$$\Leftrightarrow \theta_{5e\ crit} - \varphi_e = \mathbf{0}$$

$$\Leftrightarrow \theta_{5e\ crit} = \varphi_e \quad (78,69^\circ)$$

La fonction arccos renvoie des valeurs dans l'intervalle $[0; \pi]$. Il faut donc vérifier que $\theta_5 - \varphi_e$ est dans cette intervalle, ce qui est le cas pour $\theta_5 \ge \theta_{5e\ crit}$ ($\theta_5\ croissant$).

$$\theta_5 = Arccos\left(\frac{\lambda_2^2 - 2 \cdot d^2 - a^2}{-2 \cdot d \cdot \sqrt{d^2 + a^2}}\right) + \varphi_e \quad pour \ \lambda_2 \ge \lambda_{2 \ crit}$$

Remarque : il existe un autre point critique pour l'alignement A, C, B mais $\theta_5 = 180^\circ$ est atteint avant.