- Programme de kôlles SII -

Semaine 9 : C10 – Systèmes du premier ordre

Remarques préliminaires

- Le cours doit être su, les TD refaits et maîtrisés.
- Les compétences attendues sont listées au début du chapitre.

C9: Loi Entrée-Sortie

cf. les points mentionnés sur programme de S8

	C10:	Systèmes	du	premier	ordre-	- Identification	\mathbf{et}	caractéristique	ues
--	------	----------	----	---------	--------	------------------	---------------	-----------------	-----

L	Définition d'un système du premier ordre (équation différentielle, forme canonique).
	Loi entrée—sortie : relation temporelle et relation dans le domaine de Laplace.
	Forme canonique de la fonction de transfert : $H(p) = \frac{K}{1 + \tau p}$.
	Constantes caractéristiques : Gain statique K et constante de temps τ .
	Réponses aux entrées-test : - Dirac, - Échelon, - Rampe. Identification graphique de K et τ
	l Temps caractéristiques : - Pente à l'origine, - Temps de réponse $t_{5\%}$, - Valeur initiale et finale
	Méthodes d'identification à partir de mesures expérimentales.
	Cas d'un système réel présentant un retard : modèle du 1er ordre retardé.
	Utilisation des théorèmes : valeur initiale, valeur finale.
	Ecriture des lois physique dans les systèmes électriques, hydrauliques (apprises en C2) et passage dans le domaine de Laplace cf. ce qui a été fait lors du cycle 1
Que	estions de cours possibles
	Donner la forme canonique d'un premier ordre et interpréter les paramètres.
	Expliquer graphiquement comment déterminer K et τ à partir d'une réponse indicielle.
	Écrire la loi entrée—sortie d'un premier ordre en temporel et dans le domaine de Laplace.
	Donner les expressions des réponses : Dirac, Échelon, Rampe.
	Donner les expressions dans Laplace des entrées test : Dirac, Échelon, Rampe.
	Définir et expliquer la signification du temps de réponse $t_{5\%}$.
	Donner le théorème de la valeur finale

 \Box Expliquer comment identifier τ avec la méthode de la tangente à l'origine.