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1 Introduction

Les matrices sont des objets mathématiques qui se présentent comme des tableaux de
nombres. Elles apparaissent dans de multiples domaines d’applications et sont incontournables
pour les épreuves écrites des concours.
Pour n’en citer que quelques unes :

— La géométrie. Les matrices peuvent être associées à des fonctions appelées applica-
tions linéaires (ex : translations, rotations, symétries,...), ce qui permet de calculer
des sommes/multiples/composées d’applications linéaires

— Calculer le terme général de suites récurrentes (cf TD).
— Manipuler plus synthétiquement les systèmes linéaires.
— Modéliser des situations en théorie des probabilités comme les châınes de Markov.
L’objectif principal de ce chapitre est la méthode du Pivot : Décomposer une matrice

rectangulaire A en un produit de la forme A = ER, où R est échelonnée réduite par lignes et
E est un produit de matrices élémentaires.

2 Ensembles de matrices

Notation : Dans ce chapitre on notera K l’ensemble R ou C. Ces ensembles sont ce que l’on
appelle des corps.

Proposition 1
Soit K un corps. Soient n, p ∈ N∗ des entiers. Une matrice M à coefficients dans K de taille
n× p est un tableau de n× p nombres dans K.
Ces nombres, ai,j ∈ K, sont appelés coefficients de la matrice.
L’indice i ∈ {1, . . . , n} indique la ligne, et l’indice j ∈ {1, . . . ,m} indique la colonne.
On le note aussi M = (ai,j)1≤i≤n,1≤j≤p (ou M = (ai,j)i,j en abrégé).
Le nombre ai,j est le coefficient ligne i colonne j de M .
Une matrice M = (ai,j)1≤i≤n,1≤j≤p à n lignes et p colonnes se représente comme suit :

M =


a1,1 · · · a1,j · · · a1,p
...

. . .
...

...
ai,1 · · · ai,j · · · ai,p
...

. . .
...

...
an,1 · · · an,j · · · an,p


Proposition 2
Soient n, p ∈ N⋆.

� On définitMn,p(K) l’ensemble des matrices à n lignes et p colonnes, à coefficients dans
K.

� On définitMn(K) =Mn,n(K) l’ensemble des matrices carrées de taille n× n, à coef-
ficients dans K.

� On définitM1,n(K) l’ensemble des matrices lignes etMn,1(K) l’ensemble des matrices
colonnes, à coefficients dans K.

3 Opérations matricielles

Vous avez déjà rencontré au lycée les opération d’addition et de multiplication par un
scalaire (un nombre) sur les vecteurs.

Ce type d’opération s’applique également à l’ensemble des matrices.
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Définition 3 (Multiplication par un scalaire)
Soient n, p ∈ N⋆, λ ∈ K et A ∈Mn,p(K).
On définit la multiplication de la matrice A par le scalaire λ, notée λ.A, comme la matrice dont
les coefficients (ci,j) valent :

∀i ∈ {1, . . . , n}, j ∈ {1, . . . , p}, ci,j = λ× ai,j .

Exemple 4 — Pour A =

(
1 1 2
0 1 3

)
et λ = 2 on a λ.A =

(
2 2 4
0 2 6

)

Définition 5 (Addition de matrices)
Soient n, p ∈ N⋆ et A,B ∈Mn,p(K).
On définit la somme de A et B, notée A+B, comme la matrice (ci,j)1≤i,j≤n deMn,p(R) dont
les coefficients vérifient :

∀1 ≤ i ≤ n, ∀1 ≤ j ≤ p, ci,j = ai,j + bi,j .

Exemple 6 — Soient A =

(
1 1 2
0 1 3

)
et B =

(
−2 0 2
1 1 1

)
, alors A+B =

(
−1 1 4
1 2 4

)
.

Il est fondamental de vérifier que les matrices qu’on veut additionner soient de même

taille. Par exemple, le calcul suivant n’a pas de sens :

(
1 0
2 1

)
+

(
1
3

)
Risque d’erreur

En général on a la propriété suivante qui généralise les calculs de l’exemple précédent.

Proposition 7 (Propriétés de l’addition matricielle)
Soient A,B,C ∈Mn,p(R). On a :

— A+B = B +A. (L’opération + est commutative)
— A+ (B + C) = (A+B) + C. (L’opération + est associative)

Démonstration —Sur feuille.

Proposition 8 (Propriétés de la multiplication par un scalaire)
Soient A,B ∈Mn,p(R) et λ, µ ∈ R. Alors, on a :

1. (λ+ µ).A = λ.A+ µ.A

2. (λ× µ).A = λ.(µ.A)

3. λ.(A+B) = λ.A+ λ.B.

Démonstration —Admis.

Définition 9 (Combinaison linéaire de matrices)
Soient A,B ∈Mn,p(K).
On appelle une combinaison linéaire des matrices A et B une matrice M de la forme :

M = λ.A+ µ.B pour λ, µ ∈ K
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Exemple 10 — Soient A =

(
1 1
0 −1

)
, B =

(
−1 2
−2 0

)
.

La matrice suivante est une combinaison linéaire de A et B dans K = C :

M = 1.A+ i.B =

(
1− i 1 + 2i
−2i −1

)

Définition 11
Soient n, p ∈ N∗.
On définit la matrice nulle deMn,p(K), notée 0n,p (ou 0), comme la matrice (0)i,j.
C’est la matrice n× p dont tous les coefficients sont nuls.

On retrouve alors que pour A ∈Mn,p(K) on a A+0n,p = A, A+(−A) = 0n,p, λ.0n,p = 0n,p.
Pour démontrer une égalité entre ces matrices, on montre cela pour leurs coefficients.

Proposition 12
Deux matrices sont égales si et seulement si elles ont les mêmes coefficients.
Pour A,B ∈Mn,p(K), on a A = B si et seulement si , ∀1 ≤ i ≤ n, 1 ≤ j ≤ n, ai,j = bi,j.

Méthode 13 (Montrer que deux matrices sont égales)
Pour montrer que deux matrices A et B sont égales :
Pour tous 1 ≤ i ≤ n, 1 ≤ j ≤ p, on écrit les valeurs de ai,j et bi,j.
Puis, on montre que ai,j = bi,j.

3.1 Matrices élémentaires

Une première famille de matrices que nous utiliserons de temps en temps est celle des
matrices élémentaires.

Définition 14 (Matrices élémentaires)
Soient n, p ∈ N, et i ∈ {1, . . . , n}, j ∈ {1, . . . , p}.
On définit la matrice élémentaire Ei,j = (ek,l) ∈Mn,m(K) par :

ek,l =

{
1, si k = i et l = j

0 sinon.

Exemple 15 — Dans M2,3(K), on a :

E1,1 =

(
1 0 0
0 0 0

)
E2,3 =

(
0 0 0
0 0 1

)
La propriété principale de ces matrices est la suivante. Nous la reverrons dans le chapitre

sur les espaces vectoriels.

Proposition 16
Toute matrice M ∈ Mn,m(K) s’écrit de manière unique comme combinaison linéaires des
matrices de la forme Ei,j.
Pour M = (mi,j)i,j, on a : M =

∑n
i=1

∑p
j=1mi,jEi,j.

Définition 17 (Symbole de Kronecker)
Soient i, j ∈ N.
On définit le symbole de Kronecker d’indice (i,j), noté δi,j, par :

δi,j =

{
1, si i = j
0 si i ̸= j

.
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Remarque 18 — Pour la matrice élémentaire Ei,j = (ek,l)k,l, on a : ek,l = δi,k.δj,l.
En effet, le coefficient ek,l vaut 1 si k = i et j = l, et vaut 0 sinon.

En plus d’une addition et d’une multiplication par un scalaire (comme les vecteurs), on
peut définir un produit entre deux matrices. Cette définition est un peu moins simple, mais se
comprend bien visuellement.

3.2 Produit de deux matrices, propriétés

Définition 19
Soient K un corps et p, q, r ∈ N∗. On définit le produit de deux matrices

A = (ai,k)i,k ∈Mp,q(K) et B = (bk,j)k,j ∈Mq,r(K),

noté A×B ou AB, comme la matrice :

C = (ci,j)(i,j)∈J1,pK×J1,rK ∈Mp,r(K) avec ci,j =

q∑
k=1

ai,k bk,j .

Remarque 20 —

1. Le produit AB n’a de sens que si le nombre de colonnes de la matrice A soit égal au
nombre de lignes de la matrice B. (taille (p, q) multiplié par taille (q, r) donne taille
(p, r))

2. Pour n ∈ N∗, si A et B appartiennent à Mn(K), alors le produit A×B est bien défini
et est aussi un élément deMn(K).

3. Dans le calcul de ci,j interviennent les coefficients de la ième ligne de A et les coefficients
de la j ème colonne de B : 

b1,1 . . . b1,j . . . b1,r
...

...
...

bk,1 bk,j bk,r
...

...
...

bq,1 . . . bq,j . . . bq,r


↓

a1,1 . . . a1,k . . . a1,q
...

...

ai,1 . . . ai,k . . . ai,q
...

...
ap,1 . . . ap,k . . . ap,q

 →


c1,1 . . . . . . c1,r
...

...
ci,j

...
...

cp,1 . . . . . . cp,r



Exemple 21 —

1.

(
2 −1 3
−2 2 −1

)−1 2 1
4 −2 3
−2 1 −1

 =

(
−12 9 −4
12 −9 5

)
.

2.

−1 2 1
4 −2 3
−2 1 −1

(
2 −1 3
−2 2 −1

)
n’a pas de sens.
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3. Le produit d’une matrice carrée et d’une matrice colonne est une matrice colonne. Par
exemple : 1 2 3

0 0 0
1 0 0

1
2
3

 =

14
0
1

 et

1 2 3
0 0 0
1 0 0

 0
−3
2

 =

0
0
0

 .

Cet exemple permet de remarquer que le produit de deux matrices non-nulles peut être
une matrice nulle. Ainsi :

AX = 0 ≠⇒ A = 0 ou X = 0.

Exercice 1 — Soient A =

(
−1 1
2 2

)
, X =

(
−3
1

)
, Y =

(
2
−2

)
et B =

(
−3 2
1 −2

)
. Calculer

les produits suivants en précisant à chaque fois la taille des matrices : AX,AY et AB.

Remarque 22 —

1. Le produit d’une matrice ligne et d’une matrice colonne de même longueur est une
matrice 1× 1 qu’on identifie à un scalaire. Par exemple :

(
1 2 3

)1
2
3

 = (14) = 14.

2. Le produit d’une matrice colonne et d’une matrice ligne de même longueur est une
matrice carrée. Par exemple :1

2
3

(
1 2 3

)
=

1 2 3
2 4 6
3 6 9

 .

Exercice 2 — Calculer les deux produitsλ1 0 0
0 λ2 0
0 0 λ3

a d g
b e h
c f i

 et

a d g
b e h
c f i

λ1 0 0
0 λ2 0
0 0 λ3

 .

Proposition 23 (Propriétés du produit matriciel)
Soient K un corps et p, q, r, s ∈ N∗. Soient A,A′ ∈ Mp,q(K), B,B′ ∈ Mq,r(K), C ∈ Mr,s(K),
et λ ∈ K. On a :

1. A (λB) = λ (AB).
Le produit matriciel et la multiplication par un scalaire commutent.

2. A (B + B′) = (AB) + (AB′) et (A+ A′)B = (AB) + (A′B).
Le produit matriciel est distributif à gauche et à droite par rapport à l’addition de
matrices.

3. A (BC) = (AB)C.
On dit que le produit matriciel est associatif. Le résultat d’une suite de produits ma-
triciels ne dépend pas de l’ordre dans lequel on effectue les produits.

Démonstration — Soient A = (ai,j)(i,j)∈J1,pK×J1,qK, B = (bi,j)(i,j)∈J1,qK×J1,rK, B
′ = (b′i,j)(i,j)∈J1,qK×J1,rK et C =

(ci,j)(i,j)∈J1,rK×J1,sK quatre matrices. Soit λ ∈ K. On a alors les égalités :

5
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1.
A(λB) = (

∑q
k=1 ai,kλbk,j)(i,j)∈J1,pK×J1,rK

= (λ
∑q

k=1 ai,kbk,j)(i,j)∈J1,pK×J1,rK

= λ(AB).
.

2.
A(B +B′) = (

∑q
k=1 ai,k(bk,j + b′k,j))(i,j)∈J1,pK×J1,rK

= (
∑q

k=1 ai,kbk,j +
∑q

k=1 ai,kb
′
k,j)(i,j)∈J1,pK×J1,rK

= AB +AB′.
.

L’autre égalité se démontre de la même manière.

3.
(AB)C = (

∑r
l=1(

∑q
k=1 ai,kbk,l)cl,j)(i,j)∈J1,pK×J1,sK

= (
∑q

k=1 ai,k(
∑r

l=1 bk,lcl,j))(i,j)∈J1,pK×J1,sK

= A(BC)
.

Proposition 24
Soient K un corps, n ≥ 1, et 1 ≤ i, j ≤ n. On a :

Ei,j Ek,l = δj,k Ei,l.

Démonstration — On calcule avec soin le produit des deux matrices élémentaires.

3.3 Transposition

Proposition 25
Soient n, p ∈ N⋆ et M = (ai,j)1≤i≤n,1≤j≤p ∈Mn,p(R).
On définit la transposée de M , notée MT , comme la matrice deMp,n(R) dont les coefficients
(bk,l)1≤k≤p,1≤,l≤n vérifient

∀1 ≤ i ≤ n, ∀1 ≤ j ≤ p, bi,j = aj,i.

Exemple 26 — La matrice A =

1 1 −1
0 2 0
2 0 3

 a pour transposée la matrice TA =

 1 0 2
1 2 0
−1 0 3



Remarque 27 —

1. Transposer une matrice transforme ses lignes en colonnes (et ses colonnes en lignes).

2. La transposée est parfois notée TM .

3. La transposée d’une matrice ligne est une matrice colonne.
La transposée d’une matrice carrée est une matrice carrée.

4. Soit A ∈Mn(K) une matrice carrée. Alors les matrices carrées A et AT :

(a) ont la même diagonale ;

(b) sont les symétriques l’une de l’autre par rapport à la diagonale.

Exercice 3 — Calculer la transposée de la matrice A =

(
1 2 −1
1 0 3

)
et X =

(
1 2 4

)
Proposition 28
Soiet A,B ∈Mn,p(K) et C ∈Mp,q(K). Alors :

1. On a (A+B)T = AT +BT .

2. Pour λ ∈ K, on a (λ.A)T = λ.(AT ).

3. On a (AC)T = CTAT .

4. On a (AT )T = A

6
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4 Ensemble des matrices carrées

4.1 Quelques matrices carrées particulières

Définition 29 (Matrice nulle et identité)
Soit n ∈ N⋆.

— La matrice identité de taille n, notée In ∈Mn(R) est la matrice diagonale dont tous les
coefficients diagonaux valent 1. Elle est de la forme

1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 1


— La matrice nulle est la matrice de taille n, notée 0n est la matrice dont tous les coeffi-

cients sont nuls.

Proposition 30
Soit A ∈Mn(K). Alors A.In = In.A = A et A.0n,n = 0n,n.A = 0.
La matrice identité est l’élément ”1”deMn(K), et la matrice nulle est l’élément ”0”deMn(K).
Démonstration — On vérifie les calculs.

En général le produit de deux matrices n’est pas commutatif (AB n’est pas forcément
égal à BA).

Par exemple, pour A =

(
0 0
1 0

)
et B =

(
0 1
0 0

)
, on a AB =

(
0 0
0 1

)
̸= BA =

(
1 0
0 0

)
.

Risque d’erreur

Exercice 4 — Soit A =

(
1 1
1 0

)
. Calculer A3.

Définition 31 (Puissances d’une matrice carrée)
Soient K un corps et n ∈ N∗. Soit A ∈ Mn(K) une matrice carrée. Pour k ∈ N on définit la
puissance k-ième de A, notée Ak, par :

A0 = In
Ak = A×A× . . .×A (k fois), si k > 0

Remarque 32 — On trouve que pour A ∈Mn(K) et k, l ∈ N, on a :

AkAl = Ak+l.

Exercice 5 — Soit A =

(
1 1
1 0

)
∈M2(R). Calculer A6.

Exercice 6 — Soit A =

(−2) 0 1
0 1 0
0 0 2

. Calculer A8.
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4.2 Matrices triangulaires et diagonales

Définition 33 (Matrices triangulaires)
Soit n ∈ N⋆ et M = (ai,j)1≤i,j≤n ∈Mn(R) une matrice carrée. On dit que M est :

— triangulaire supérieure si pour tout 1 ≤ j < i ≤ n on a ai,j = 0.
— triangulaire inférieure si pour tout 1 ≤ i < j ≤ n on a ai,j = 0.

Si M est triangulaire supérieure ou inférieure, on dit qu’elle est triangulaire.
Calculer un produit de matrices A×B (matrices p, q et q, r) demande beaucoup de calculs.

On a p× r coefficients, qui s’écrivent chacun comme une somme de q termes.
Pour des matrices carrées n× n, cela fait n3 opérations.
Ainsi, calculer les puissances d’une matrice M est en général long (après M2,M3).
On s’intéresse ainsi aux familles de matrices dont le calcul des puissances est très simple. La
famille la plus facile est celle des matrices diagonales.

Définition 34 (Matrices diagonales)
Soient n ∈ N∗ et A ∈Mn(K) une matrice carrée.
On dit que A est diagonale si, ∀(i, j) avec i ̸= j, on a ai,j = 0. C’est-à-dire, si A est de la
forme : 

λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

 .

Cette matrice se note Diag(λ1, λ2, . . . , λn).
On note Dn(K) l’ensemble des matrices diagonales de taille n× n.

Proposition 35
Soit D ∈Mn(R), une matrice diagonale. Soit k ∈ N.
Alors, la matrice Dk est encore une matrice diagonale.
Pour D = Diag(λ1, . . . , λn), on a Dk = Diag(λk

1, . . . , λ
k
n).

Exemple 36 — Soit D =

1 0 0
0 2 0
0 0 3

 ∈M3(R). Pour tout n ∈ N,

Dn =

1 0 0
0 2n 0
0 0 3n



4.3 Matrices symétriques et antisymétriques

Proposition 37
Soit n ∈ N⋆ et M = (ai,j)1≤i,j≤n ∈Mn(R).
On dit que la matrice M est symétrique si TM = M .
On dit que M est antisymétrique si MT = −M .

Exemple 38 — La matrice A =

(
1 2
2 5

)
est symétrique de taille 2.

Exercice 7 — Existe-t-il une matrice A de taille 2 qui soit symétrique et triangulaire supé-
rieure ?

8
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4.4 Formule du binôme

Il est possible d’étendre la formule du binôme aux matrices carrées, en ajoutant la condition
que celles-ci commutent (AB = BA)

Proposition 39
Soient A,B ∈MnR des matrices telles que AB = BA (A et B commutent).
Alors, pour tout p ≥ 1, on a :

(A+B)p =

p∑
k=0

(
p

k

)
.Ak.Bp−k

Démonstration —Identique à celle de la formule du binôme pour les complexes. (Preuve par
récurrence sur p.)

Exemple 40 — Soient A =

(
1 0
0 1

)
et B =

(
0 1
0 0

)
.

On a AB = BA = B car A = I2 donc les matrices commutent et on peut appliquer la formule
du binôme.
Remarquons que B2 = 02 et que pour tout m ∈ N on a Am = A = I2. Pour tout p ∈ N on a
donc :

(A+B)p =

p∑
k=0

(
p

k

)
.Ap−k.Bk (1)

=

p∑
k=0

(
p

k

)
.Bk (2)

=

(
p

0

)
.B0 +

(
p

1

)
.B1 + 0 = I2 + p.B (3)

=

(
1 p
0 1

)
(4)

Méthode 41 (Calculer (A+B)p)
Pour calculer la puissance p d’une somme de matrices A + B en appliquant la formule du
binôme :

1. On s’assure que A et B vérifient AB = BA.

2. On calcule les puissances de A et de B. En général leur forme est simple dans les
exercices.

3. On calcule les coefficients binomiaux
(
k
p

)
, pour 0 ≤ k ≤ p.

4. On applique la formule du binôme.

Remarque 42 — Pour A et B deux matrices deMn(K), on ne peut en général pas appliquer
les formules du binôme pour développer (A+B)2, (A+B)m ou pour factoriser A2−B2,Am−Bm.
On a par exemple (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2, mais on ne peut pas
simplifier plus cette expression car A et B ne commutent pas forcément (on ne sait rien entre
AB et BA).

Remarque 43 — Prenons a ∈ [0, 1] et b =
√
1− a2. Posons A =

(
a b
b −a

)
. On a alors :

A2 =

(
a b
b −a

)(
a b
b −a

)
=

(
a2 + b2 ab− ba
ab− ba b2 + a2

)
=

(
1 0
0 1

)
= I2

Ainsi, dansM2(R), il existe une infinité de matrices A telles que A2 = I2. (alors que l’équation
x2 = 1 ne possède que deux solutions dans R)
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4.5 Matrices carrées inversibles

Maintenant que nous avons une multiplication sur l’ensemble des matrices carrées, nous
pouvons définir les matrices inversibles : celles qui admettent un inverse pour la multiplication.

Définition 44 (Matrices inversibles, droupe linéaire)
Soient n ∈ N⋆ et A ∈Mn(K).
On dit que A est inversible s’il existe B ∈Mn(K) tell que AB = In et BA = In.
Une telle matrice B est appelée l’inverse de A. On la note B = A−1.
L’ensemble des matrices inversibles deMn(K) est noté Gln(R).
Cet ensemble est appelé le groupe linéaire de taille n (Gln).

Proposition 45
Soit A ∈ Gln(K).
Il existe une unique matrice B ∈Mn(K) telle que BA = AB = In.
L’inverse d’une matrice est unique.
Démonstration —

Remarque 46 — Une matrice inversible A possède un unique inverse, ce qui justifie bien dans
la définition de parler de ”l’inverse” de A et d’employer la notation A−1.

Proposition 47
Soit A ∈ Gln(K).
Alors, A est inversible si et seulement s’il existe B ∈Mn(K) telle que BA = In ou BA = In.

Méthode 48 (Montrer qu’une matrice est inverse d’une autre)
Soient A,B deux matrices carrées.
Pour montrer que A est inversible d’inverse B, il suffit de calculer le produit AB ou le produit
BA, et de vérifier que cela donne l’identité In.
Avec la proposition précédente, calculer un seul de ces produits suffit.

Exemple 49 — La matrice A =

(
2 1
1 1

)
est inversible dansM2(R), d’inverse A−1 =

(
1 −1
−1 2

)

Proposition 50
Soit n ∈ N⋆. Alors :

1. La matrice In est inversible, d’inverse elle-même.

2. La matrice nulle n’est pas inversible.

3. Pour A,B des matrices non-nulles telles que AB = 0, les matrices A et B ne sont pas
inversibles.

Démonstration —Sur feuille.

Théorème 51 (Propriétés du groupe linéaire)
Soient A,B ∈Mn(K) des matrices inversibles. Alors :

1. AB est inversible, d’inverse (AB)−1 = B−1.A−1.

2. (A−1)−1 = A.

Démonstration — On utilise la définition de l’inverse d’une matrice.

10
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La somme de deux matrices inversibles n’est, en général, pas inversible. Par exemple,
I3 + (−I3) = 0 n’est pas inversible.

Risque d’erreur

Proposition 52 (Inverse et transposée)
Soit A ∈Mn(K) une matrice inversible.
Alors, on a (AT )−1 = (A−1)T . Démonstration —On a (AT ).(A−1)T = (A−1.A)T = ITn = In, ce
qui prouve le résultat.

4.6 Matrices de taille 2× 2 inversibles

Proposition 53

Soit A =

(
a b
c d

)
∈M2(K).

La matrice A est inversible si et seulement si ad− bc ̸= 0.
Si ad− bc ̸= 0, on a :

A−1 =
1

ad− bc

(
d −b
−c a

)
Démonstration — Posons B =

(
d −b
−c a

)
. On calcule :

AB =

(
a b
c d

)(
d −b
−c a

)
=

(
ad− bc 0

0 ad− bc

)
= (ad− bc)I2

BA =

(
d −b
−c a

)(
a b
c d

)
=

(
da− bc 0

0 da− bc

)
= (ad− bc)I2.

Donc, si ad− bc ̸= 0, en posant C = 1
ad−bc

B, on a AC = CA = I2. Donc A est inversible d’inverse C.

Supposons maintenant que ad− bc = 0. On a alors AB = 0. Supposons par l’absurde que A est inversible.

Alors on a B = A−1.A.B = 0. Donc B = 0, donc a = b = c = d = 0. Donc A = 0.

Mais la matrice nulle n’est pas inversible, contradiction. Donc, A n’est pas inversible.

5 Systèmes linéaires et matrices

5.1 Systèmes linéaires de n équations à p inconnues

Définition 54 (Équation linéaire à p inconnues)
Soient p ∈ N⋆, ainsi que a1, a2, . . . , ap, b ∈ K.
On appelle équation linéaire à p inconnues, d’inconnues x1, x2, . . . , xp ∈ K, une équation
de la forme a1x1 + a2x2 + · · ·+ apxp = b.

Exemple 55 — L’équation x+ y+ z+ t = −1 est une équation linéaire à 4 inconnues x, y, z, t
dont (1, 0, 0,−2) et (1, 1, 1,−4) sont des solutions.

Définition 56 (Système linéaire)
Un système linéaire à n lignes et p inconnues est un système de la forme :

(S)


a1,1x1 + a1,2x2 + · · · + a1,pxp = b1 (L1)
a2,1x1 + a2,2x2 + · · · + a2,pxp = b2 (L2)

...
an,1x1 + an,2x2 + · · · + an,pxp = bn (Ln)

Les nombres ai,j (i ∈ {1, . . . , n}, j ∈ {1, . . . , p}) sont appelés les coefficients du système.
Les nombres bi sont appelés les seconds membres du système.
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Les inconnues sont les nombres x1, . . . , xp.
Une solution du système (S) est un p-uplet (x1, . . . , xp).

Remarque 57 — On peut voir un système linéaire à n lignes et p inconnues comme n équations
linéaires Li pour i ∈ J1;nK vérifiées simultanément.

Définition 58

� Résoudre un système linéaire (S) de n lignes à p inconnues consiste à déterminer
l’ensemble des (x1, x2, . . . , xp) qui sont solution du système (S).

� On appelle aussi un système linéaire à n lignes et p inconnues un système n× p .
� Un système qui n’a pas de solutions est dit incompatible.
� Un système qui a des solutions est dit compatible.

En physique les équations de Laplace pour déterminer la circulation de la chaleur à l’in-
térieur d’un objet passe dans certains cas par la résolution de ce système de taille n× n.

(S)


2x1 + x2 + 0 + · · · + 0 = b1 (L1)
−x1 + 2x2 + x3 +0 · · · + 0 = b2 (L2)

...
0 + 0 + · · · + −xn−1 + 2xn = bn (Ln)

Pour résoudre ce système on peut utliser une méthode de résolution générale que nous
allons rencontrer dans la prochaine section. Ce type de résolution sera abordé à l’aide de
Python en TP d’informatique.

Application à la Physique

5.2 Ecriture matricielle d’un système linéaire

Un système linéaire de la forme :

(S)


a1,1x1 + a1,2x2 + · · · + a1,pxp = b1 (L1)
a2,1x1 + a2,2x2 + · · · + a2,pxp = b2 (L2)

...
an,1x1 + an,2x2 + · · · + an,pxp = bn (Ln)

peut se représenter comme une équation matricielle AX = B d’inconnue X ∈ Mp,1(K), où
A ∈Mn,p(K) et B ∈Mn,p(K) sont les matrices

A =


a1,1 · · · a1,j · · · a1,p
...

. . .
...

...
ai,1 · · · ai,j · · · ai,p
...

. . .
...

...
an,1 · · · an,j · · · an,p

 B =


b1
...
bi
...
bn


Définition 59 (Matrice augmentée associée à un système linéaire)
Soit (S) le système linéaire de taille n× p :

(S)


a1,1x1 + a1,2x2 + · · · + a1,pxp = b1 (L1)
a2,1x1 + a2,2x2 + · · · + a2,pxp = b2 (L2)

...
an,1x1 + an,2x2 + · · · + an,pxp = bn (Ln)
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La matrice augmentée associée à (S), notée (A | b) est la matrice de taille n× (p+ 1)
dont les coefficients sont les suivants :

(A | b) =


a1,1 · · · a1,j · · · a1,p b1
...

. . .
...

...
...

ai,1 · · · ai,j · · · ai,p bp
...

. . .
...

...
...

an,1 · · · an,j · · · an,p bn

 .

La matrice (A | b) est aussi appelée la concaténation de la matrice A avec la matrice b. (on
colle les deux matrices)

Exemple 60 — La matrice augmentée associée au système de taille 2× 3

(S)

{
x − 2y + z = 3
4x + y − z = −12

Alors la matrice associée à (S) est (A | b) =
(
1 −2 1 3
4 1 −1 −12

)
.

5.3 Matrices élémentaires

Nous définissons de nouvelles matrices carrées, les matrices élémentaires. Elles nous servi-
ront pour utiliser la méthode du Pivot.

Définition 61 (Matrices de transvection)
Soit a ∈ K, 1 ≤ i ≤ n et 1 ≤ j ≤ m.
On définit la matrice de transvection Ti,j(a) ∈Mn,m(K), par :

Ti,j(a) = In + a.Ei,j

Définition 62 (Matrices de transposition)
Soient 1 ≤ i, j ≤ n.
On définit la matrice de transpostion Ti,j comme la matrice obtenue en échangeant les
colonnes Ci et Cj de la matrice identité In.
C’est-à-dire : Ti,j = In + Ej,i + Ei,j − Ei,i − Ej,j.

Définition 63 (Matrices de dilatation)
Soient λ ∈ K et 1 ≤ i ≤ n.
On définit la matrice de dilatation Di(λ) par :

Di(λ) = In + (λ− 1).Ei,i

Exemple 64 — Dans M3(R) on a D2(4) =

1 0 0
0 4 0
0 0 1


Avec cela, définissons les opérations élémentaires sur un système linéaire (S).

Définition 65 (Opérations élémentaires)
Soit (S) un système linéaire de taille n × p, d’équation associée AX = b. On note (Li)1≤i≤n

les lignes du système (S).
On définit les opérations élémentaires comme les opérations suivantes :

� Permuter les lignes Li et Lj : Li ↔ Lj.

13
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� Multiplier la ligne Li par λ ∈ K non-nul : Li ← λ.Li.
� Ajouter λ.Lj à la ligne Li : Li ← Li + λ.Lj (pour i ̸= j).

Théorème 66 (Action des matrices élémentaires)
Soit (S) un système linéaire d’équation associée AX = b. On pose M = (A | b). On a :

1. La matrice Ti,j(a)M = (A′ | b′) est la matrice associée au système S ′, obtenu en appli-
quant l’opération élémentaire Li ← Li + a.Lj à S.

2. La matrice Ti,jM = (A′ | b′) est la matrice associée au système S ′, obtenu en appliquant
l’opération élémentaire Lj ↔ Li à S.

3. La matrice Di(λ)M = (A′ | b′) est la matrice associée au système S ′, obtenu en appli-
quant l’opération élémentaire Lj ← λ.Lj à S.

Proposition 67
Les matrices élémentaires sont inversibles.

Corollaire 68
Soit (S) un système linéaire, et soit (S′) le système obtenu après avoir appliqué une opération
élémentaire à (S).
Alors, les systèmes (S) et (S′) ont les mêmes ensembles de solutions.

5.4 Méthode du Pivot, opérations élémentaires

Soit (S) un système linéaire, d’équation associée AX = b. Si la matrice A est ”́echelonnée”
(en forme d’escalier), alors il est facile de trouver les solutions de (S) en ”remontant” le système.
Pour résoudre un système linéaire quelconque, on lui applique une succession d’opérations
élémentaires jusqu’à arriver à un système qui est ”́echelonné”.
C’est ce qu’on appelle la méthode du Pivot (dit de Gauss), déjà rencontrée au chapitre Calculs
algébriques.

Méthode 69
On travaille sur la matrice augmentée (A | b) associée à (S). On procède par étape :

� Étape 1 : On échange les lignes de la matrice de manière à ce que les premières lignes
contiennent des coefficients non nuls.
On fait en sorte que la première ligne ait un coefficient non-nul le plus à gauche possible.

� Étape 2 : Si la ligne L1 possède un coefficient non-nul dans sa première colonne.

Alors, pour tout i ∈ {2, . . . , n}, on effectue l’opération Li ← Li −
ai,1
a1,1

.L1.

Cela annule les coefficients dans la première colonne aux lignes L2, . . . , Ln.
� Étape 3 : On recommence les étapes (1) et (2) au système (n − 1) × (p + 1 − 1) formé
par les lignes (Li)2≤i≤n, jusqu’à arriver à n = 1 ou p = 1.

� Étape 4 : la matrice obtenue est ”́echelonnée” (la matrice a une forme d’escalier).
On distingue alors deux cas :
• S’il existe des lignes dans la matrice finale dont tous les coefficients sont nuls sauf
celui de la dernière colonne, alors le système n’a pas de solutions.
• Si ce n’est pas le cas, alors le système (S) admet au moins une solution.

� Si (S) possède des solutions, on prend le système d’équations associé à la matrice obte-
nue.
Puis, on ”remonte” les lignes (on résout chaque ligne en partant de la dernière et en
allant vers la première), afin de trouver toutes les solutions de (S).

5.5 Exemples d’utilisation de la méthode du Pivot

Exemple 70 — Résolvons par l’algorithme de Gauss le système suivant :
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(S)


2y + z = 1 (L1)

x − y + z = 0 (L2)
x + y + z = 3 (L3)

On a :

(S) ⇐⇒
L1 ↔ L3


x + y + z = 3
x − y + z = 0

2y + z = 1

⇐⇒
L2 ← L2 − L1


x + y + z = 3
0 − 2y + 0 = −3

2y + z = 1

(S) ⇐⇒
L3 ← L3 + L2


x + y + z = 3
− 2y = −3

0 + z = −2
(système échelonné)

(S) ⇐⇒


x = 3− y − z = 5− 3

2 = 7
2

y = −3
−2 = 3

2

z = −2

L’ensemble des solutions de (S) est {(72 ,
3
2 ,−2)}.

Exemple 71 — Appliquer la méthode du Pivot sur A =

 1 2 0 3
−1 1 1 0
2 1 7 1

.

On a :

 1 2 0 3
−1 1 1 0
2 1 7 1

 −→
L2 ← L2 + L1

L3 ← L3 − 2L1

1 2 0 3
0 3 1 3
0 −3 7 −5

 −→
L2 ← 1

3L2

L3 ← L3 + 3L2

1 2 0 3
0 1 1

3 1
0 0 8 −2

 .

On a bien obtenu une matrice échelonnée.
Pour B cette matrice échelonnée, les opérations effectuées donnent :

E(3, 2, 3)M(2,
1

3
)E(3, 1,−2)E(1, 2, 1)A = B.

Exemple 72 — Appliquer la méthode du Pivot sur A =

0 2 1
2 2 1
1 4 3

.

On a :

0 2 1
2 2 1
1 4 3

 −→
L1 ↔ L3

1 4 3
2 2 1
0 2 1

 −→
L2 ← L2 − 2L1

1 4 3
0 −6 −5
0 2 1

 .

1 4 3
0 −6 −5
0 2 1

 −→
L2 ← 1

−6L2

L3 ← L3 − 2L2

1 4 3
0 1 5

6
0 0 −2

3

 .

On a bien obtenu une matrice échelonnée. Pour B cette matrice échelonnée, les opérations
effectuées donnent : E(3, 2,−2)M(2, −1

6 )E(2, 1,−2)S(1, 3)A = B.

Si l’on avait effectué L1 ↔ L2 dans l’exemple précédent, on aurait obtenu une matrice
échelonnée différente. Cela ne dérange pas.

Exemple 73 — Résoudre le système linéaire : (S) :


x1 + 4x2 − 5x3 = 1

2x1 − 2x2 + x3 = 0
3x1 − x2 − x3 = 1

.

On utilise la méthode du Pivot :

(S)
⇐⇒

L2 ← L2 − 2L1

L3 ← L3 − 3L1


x1 + 4x2 − 5x3 = 1
0 − 10x2 + 11x3 = −2
0 − 13x2 + 14x3 = −2
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(S)
⇐⇒

L2 ← 1
−10L2

L3 ← L3 + 13L2


x1 + 4x2 − 5x3 = 1
0 + x2 + −11

10 x3 = 1
5

0 + 0 + (14 + −143
10 )x3 = −2 + 13

5

(système échelonné)

(S) ⇐⇒


x1 + 4x2 − 5x3 = 1
0 + x2 + −11

10 x3 = 1
5

0 + 0 − 3
10x3 = 3

5

⇐⇒


x1 = 1− 4x2 + 5x3
x2 = 1

5 + 11
10x3

x3 = −10
5 = −2

(S) ⇐⇒


x1 = 1− 4x2 + 5x3
x2 = 1

5 + 11
10(−2) =

−10
5 = −2

x3 = −2
⇐⇒


x1 = 1− 4(−2) + 5(−2) = −1
x2 = −2
x3 = −2

L’ensemble des solutions de (S) est {(−1,−2,−2)}.

5.6 Calcul de l’inverse d’une matrice avec la méthode du Pivot

Proposition 74
Soient K un corps, n ∈ N∗. Soit A ∈Mn(K).
Si, en appliquant la méthode du Pivot à A, on obtient à une étape une matrice dont une ligne
est nulle, alors A n’est pas inversible.
Si, en appliquant la méthode du Pivot à A, on obtient une matrice échelonnée sans ligne nulle,
alors A est inversible.

Exemple 75 — L

a matrice A =

 1 2 1
−4 3 2
−3 5 3

 est-elle inversible ?

On applique la méthode du Pivot à A : 1 2 1
−4 3 2
−3 5 3

 −→
L2 ← L2 + 4L1

L3 ← L3 + 3L1

1 2 1
0 11 6
0 11 6

 −→
L3 ← L3 − L2

1 2 1
0 11 6
0 0 0


On a obtenu une matrice avec la ligne nulle pendant la méthode du Pivot. Donc A n’est pas

inversible.

Remarque 76 — Soit A ∈Mn(K). S’il existe des matrices élémentaires M1, . . . ,Mr telles que
M1 . . .MrA = In, alors on a A = (M1 . . .Mr)

−1. Donc A est inversible et M1 . . .Mr = A−1.

Proposition 77
Soient K un corps, n ∈ N∗. Soit A ∈Mn(K).
On pose B = (A | In) ∈ Mn,2n(K), la matrice obtenue en ”collant” les matrices A et In.
C’est-à-dire :

B =


a1,1 . . . a1,n 1 0 . . . 0
a2,1 . . . a2,n 0 1 . . . 0
...

...
...

. . .
...

an,1 . . . an,n 0 0 . . . 1

 .

Si, en appliquant la méthode du Pivot à B, on obtient une matrice de la forme (In |M), alors
on a M = A−1.
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Méthode 78 (Déterminer si une matrice A est inversible, et calculer son inverse)

1. On applique la méthode du Pivot à la matrice (A | In).
2. Si à un moment on obtient une matrice avec une ligne nulle, alors la matrice A n’est

pas inversible.
Sinon, on continue la méthode du Pivot.

3. Lorsqu’on arrive à une matrice de la forme (In|M).
Alors, la matrice A est inversible, et A−1 = M .

Quand la matrice A est très grande ou que l’on ne connâıt pas explicitement ses coefficients,
il faudra utiliser d’autres méthodes pour dire si elle est inversible et pour calculer son inverse.

Exemple 79 — M

ontrer que la matrice A =

 1 2 1
−4 3 2
1 5 3

 est inversible, et calculer son inverse.

On applique la méthode du Pivot à la matrice B = (A | I3) : 1 2 1 1 0 0
−4 3 2 0 1 0
1 5 3 0 0 1

 −→
L2 ← L2 + 4L1

L3 ← L3 − L1

1 2 1 1 0 0
0 11 6 4 1 0
0 3 2 −1 0 1



−→
L2 ← 1

11L2

L3 ← L3 − 3L2

1 2 1 1 0 0
0 1 6

11
4
11

1
11 0

0 0 4
11

−23
11

−3
11 1

 −→
L3 ← 11

4 L3

L2 ← L2 − 6
11L2

L1 ← L1 − L3

1 2 0 27
4

3
4

−11
4

0 1 0 4
11 + 23.6

4.11
1
11 + 3.6

4.11
−6
4

0 0 1 −23
4

−3
4

11
4



=

1 2 0 27
4

3
4

−11
4

0 1 0 7
2

1
2

−3
2

0 0 1 −23
4

−3
4

11
4

 −→
L1 ← L1 − 2L2

1 0 0 −1
4

−1
4

1
4

0 1 0 7
2

1
2

−3
2

0 0 1 −23
4

−3
4

11
4


On a obtenu une matrice de la forme (I3 |M). Donc A est inversible et A−1 = M , avec :

A−1 =
1

4

 −1 −1 1
14 2 −6
−23 −3 11

 .

Exercice 8 — À l’aide de la méthode précédente, déterminer l’inverse de la matrice A =(
1 1
1 2

)
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Bilan du contenu nécessaire à mâıtriser :
— Définition d’une matrice à coefficients dans un corps (K = R ou C). Coefficient mi,j

d’une matrice M . Ecriture M = (mi,j)i,j . Ensemble de matricesMn,p(K). Ensemble de
matrices carréesMn(K).

— Connâıtre les matrices particulières : nulle On,p, identité In, élémentaires Ei,j .
— Formes particulières de matrices : triangulaire (supérieure ou inférieure), diagonale, sy-

métrique, antisymétrique, inversible.
— Opérations matricielles : somme, multiplication par λ ∈ K, produit de matrices, puis-

sance de matrices.
Savoir réaliser les opérations matricielles à l’aide des coefficients des matrices. ((A +
B)i,j = Ai,j +Bi,j , (λA)i,j = λ.Ai,j , (A.B)i,j =

∑p
k=1Ai,kBk,j).

Savoir représenter au brouillon un produit de matrices correctement, et faire attention
aux tailles de matrices.

— Le produit matriciel n’est en général pas commutatif.
— Lorsque A et B commutent, toutes les relations algébriques connues s’appliquent (iden-

tités remarquables, formule du binôme pour (A+B)n, An −Bn).
— Calcul des puissances d’une matrice (par la formule du binôme, ou par récurrence).
— Transposée d’une matrice. Transposée et produit (T (A.B) = BT .AT )
— Matrice carrée inversible. Définition. Une matrice inversible possède un unique inverse,

noté M−1. Ensemble Gln(K). Proposition : M ∈Mn(K) est inversible ssi il existe M ′ ∈
Mn(K) telle que MM ′ = In ou M ′M = In.
Un produit de matrices inversibles est inversible. On a (AB)−1 = B−1A−1.

— Cas des matrices 2x2 : Pour M =

(
a b
c d

)
, M est inversible ssi det(M) = ad − bc est

non-nul. Et, on a M−1 = 1
det(M)

(
d −b
−c a

)
.

— Système linéaire de n équations à p inconnues. Correspondance entre système linéaire
(S) et équation matricielle MX = B.
Résolution d’un système linéaire échelonné (pas de solutions, une solution, ou une infinité
de solutions).
Résolution d’un système linéaire avec la méthode du Pivot sur les lignes.
Savoir reconnâıtre la forme des solutions d’un système linéaire.

— Résolution du système (S) en échelonnant la matrice concaténée (M |B).
— Matrices échelonnées. Concaténation de deux matrices. Opérations élémentaires sur les

lignes.
Méthode du Pivot sur les lignes pour échelonner une matrice M .

— Méthode du Pivot et inverse : Une matrice carrée M est inversible ssi elle s’échelonne
en une matrice dont les coefficients diagonaux sont tous non-nuls.
En échelonnant la matrice (M |In) de la forme (In|M ′), on a M ′ = M−1.
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