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Chapitre 11
Polynomes

TABLE DES MATIERES

1 Polynomes, opérations sur les polynomes. ..., 1
1.1 Polynomes a une indéterminée . .......... ... .. . . i 1
1.2 Opérations sur les polynomes ... ..., 1
1.3 Degré d’un polynoéme . . ... ... 3
1.4  Fonctions polynomiales, évaluation d’un polynéme .................. 4
2 Division euclidienne de polynomes ......... ... ... .. . .. 6
2.1 Notion de divisibilité ... ... .. .. 6
2.2 Division euclidienne de polynémes ........... .. ... .. .. . ... 6
3 Polynomes irréductibles, décomposition en facteurs irréductibles ............ 7
4 Racines dun polynome . ...... ... i 7
4.1 Multiplicité d’une racine, polynomes scindés........................ 7
5 Dérivation dans K[X] ... ... 8
5.1  Dérivée d'un polynodme . ........... . 8
5.2 Formule de Taylor ..... ... i 9
5.3 Caractérisation des racines multiples .......... ... ... .. ... ... ... 9
5.4  Théoreme de Rolle pour les polynomes réels ... ..................... 10
5.5 Racines complexes conjuguées de polynémes réels ................... 11
5.6  Racines d'un polynome et de son polynoéme dérivé .................. 11
6 Décomposition en produit de polynémes irréductibles dans C[X] et R[X]..... 11
6.1  Factorisation dans C[X| .. ..o ot 11
6.2  Factorisation dans R[X| ... oo 12
7 Relations entre coefficients et racines ......... ... .. .. .. . .. 13
7.1 Résolution de systemes a deux inconnues............. .. .. .. .. .... 14
8 Décomposition en éléments simples. ... ...t 14

Vidal AGNIEL



Lycée du Diadéme - Te Tara o Mai’ao PTSI, Année 2025-2026

Un polynoéme s’écrit de la forme :
P(X)=a, X" +a, 1 X" ' 4+...+a1X + ao,

ou les a; s’appellent les coefficients de P et X ou est 'indéterminée.

Le premier probléme est de définir correctement ce que l'on veut dire par "'indéterminée X7,
de choisir & quel ensemble appartiennent les coefficients a;, et d’avoir les outils nécessaires pour
manipuler les polynémes efficacement.

On retrouvera les polynémes tant en analyse (par ex. les développements limités) qu’en algebre (par
ex. polynome caractéristique d’une application linéaire). Une bonne maitrise des produits, divisions
et factorisations de polynomes ainsi que de la caractérisation des racines est indispensable.

1 POLYNOMES, OPERATIONS SUR LES POLYNOMES

1.1 Polynomes a une indéterminée

Dans tout ce chapitre, I’ensemble K désignera R ou C ou Q. Ces ensembles sont des corps.

DEFINITION 1
Soit K un corps. On appelle indéterminée un objet X que 'on peut :

e additionner avec lui-méme : X + X =2X
e multiplier par un élément de K : A x X
e multiplier avec lui-méme : X2 = X x X

Attention : L’indéterminée X n’est pas un nombre.

En fait, I'indéterminée X est une suite, et tous les polynomes sont des suites. La construction d’un
polynome n’est pas au programme.

DEFINITION 2

Soit K un corps. On appelle polynéme a une indéterminée a coefficients dans K toute expression de
la forme ag + a1 X + as X%+ ... + a, X"

Ce sont des sommes finies, de multiples, des puissances de X.

L’ensemble des polynémes est noté K[X].

Un élément de K[X] se notera P(X) (pour indiquer qu’il dépend de l'indéterminée X).

On écrira au choix P(X) =ag+ a1 X +... +a, X" ou P(X) = > ;_,apX*.

Les nombres ag, . .., a, sont dans K. Ce sont les coefficients de P.

Le nombre ay, est appelé coefficient de degré k de P.

Par convention, pour P(X) =ao+ a1 X + ...+ ¢, X", on pose ar = 0 pour tout k& > n.

REMARQUE 3 (Définition formelle (HP)) —

Un polynome P € K[X] est une suite (ax)r qui posséde un nombre fini de termes non-nuls.

Autrement dit, on a P = (ag)k>0 = (ag,a1,...,a,,0,0,...).

Pour k € N, on définit X*¥ comme la suite qui vaut 1 au rang k et 0 ailleurs : X* = (0,...,0,1,0,...).

On sait déja additionner deux suites et multiplier une suite par une constante. On a par exemple
(2,1,3,0,0,...) =2.X° 4+ 1.X' +3.X2 = 3X% 42X +1.

Pour P, cela donne : P = (ag,...,an,0,...) = (a0,0,...)+(0,a1,0,...)+...+(0,...,0,a,,0,...) =

aog(1,0,...) +a1(0,1,0,...) + ... +a,(0,...,0,1,0,...) = ao X' + a1 X! + as X? + ... + a, X" =
n

Z aka.
k=0

REMARQUE 4 — L’indéterminée X est un élément trés important pour travailler dans K[X].
On écrit souvent P(X) a la place de P. Cetle écriture est parfois trés utile (par exemple pour
différencier un polynéme P(X) de sa fonction polynémiale associée x — P(x)).

1.2 Opérations sur les polynomes

DEFINITION 5 (Opérations +, ., x sur les polynémes)
Soit K un corps. On définit sur K[X] deux lois internes (4, x) et une loi externe (.). Soient
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PX)=ap+...+a, X" Q(X)=bo+ ... +b, X"+ ...+ b, X™ deux polynoémes de K[X] (avec
n <m).

1. L’addition, +, est définie par :

(ag+ ... +a, X"+ (o4 ...+, X"+ ...+ b, X™)
(ag +bo) + (a1 +b1)X + ...+ (an +0) X" + by X"+ 4 b, X

Un tel objet est bien un polyndme.
Le polynéme nul, noté Ok x) ou 0, est I’élément neutre pour 'addition +.

2. La multiplication par un scalaire de K, ., définie par :
Alag+ ... +a, X") = (Aag) + (Aa1) X + ...+ (Aay) X™.

3. La multiplication, X, est définie par :
n
(ag+. . Aan X™)x(bo+. . .+by X" +. . AbpX™) = co+c1 X +. . A Cpim X", avec ¢, = Z arby_r.
k=0

Un tel objet est bien un polynoéme car ¢ = 0 pour k& > m + n.
Le polynome constant égal a 1, noté 1x[x] ou 1, est I'’élément neutre pour la multiplication x.

PROPOSITION 6
Soit K un corps. Soient P, Q, R € K[X]. Soit A € K. On a :

1. P+(Q+ R)=(P+ Q)+ R (+ est associative) ;

P+Q=Q+ P (+ est commutative);

P+0=0+ P = P (0 est le neutre de +);

A(P+Q)=AP+AQ (. est distributive sur +);

Px(Q xR)= (P x Q) xR (x est associatve) ;

(P x Q)= (Q x P) (x est commutative);

(Px1)=(1xP)=P (1 est le neutre de x);
Px(Q+R)=PxQ+PxR=(Q+R)x P (x est distributive sur +);
9. Px (AQ)=APxQ (x et.commutent).

L’ensemble (K[X], +,.) est un K-espace vectoriel (comme R? ou R?).
L’ensemble (K[X], +, X) est un anneau (comme R ou C).

® N o Ok W

PROPOSITION 7 (Egalité entre polynomes)Soit K[X] un corps. Soit P(X) = ap+...+a, X" € K[X].
Deux polynomes P et Q) sont égauz ssi tous leurs coefficients sont égauzr. En particulier, P est le
polynéme nul si et seulement si tous ses coefficients sont nuls (ssi ag =a; =...=a, =0).

Dans la définition d’un polynoéme P(X), les coefficients aq, ..., a, sont pris dans K sans aucune
condition. C’est-a-dire que 'on peut écrire : X? = X2 +0.X3 = X2 4+ 0.X19,

Il existe une facon d’écrire un polynéme P qui est sans ambiguité. Cette écriture utilise ce que 1'on
appelle le coefficient dominant de P.

ProOPOSITION 8 (Equations produit-nul) Un produit de deuz polynémes est nul si et seulement si
l'un des deux polynomes est nul.

Ecriture d’un polynome

PROPOSITION 9
Tout polynéme P € K[X] non nul s’écrit de maniére unique de la forme :

P=a, X"+ an,_1 X" ' +...+ap,

avec ag, ..., a, € Ket a, #0.
Le coefficient a,, non-nul est alors appelé le coefficient dominant de P.
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Preuve — Soit P(X) =ao + ...+ amX™ un polynéme.

Comme P est non-nul, il existe au moins un coefficient a; de P tel que ag # 0.

On pose n le plus grand indice tel que amn # 0 (il existe bien). Cela veut dire que pour tout j > m, on a a; = 0.
Ainsi, on obtient que P(X) = ag + ...+ anX™. Comme ’entier n est unique (c’est LE plus grand indice), cette

écriture est unique. O

REMARQUE 10 — Pour écrire un produit de polynémes en utilisant le symbole >, cela donne :

n m m-+n k
(Z aka> X (Z kak> = Z cka, avec ¢ = Zaibk,i.
k=0 k=0 k=0 i=0
EXEMPLE 11 — Pour multiplier rapidement deuz polynémes, on utilise la distributivité du produit

sur la somme et on regroupe les termes de méme degré :

(X+D(XP+X+2) =X (1.1)+ X311+ X2(1L.) + X(1.1+1.2) +(1.2) = X* + X3 + X% +3X + 2,
(X2 4+ X +1)(X? —4X +3) = X*(1.1) + X3(1.(—4) + 1.1) + X?(1.1 + 1.(—4) + 1.3) + X (1.3 + 1.(—4)) + (1.3)
=X*-3X3-X+3.

REMARQUE 12 — De la méme fagon, on peut aussi définir Z[X] U’ensemble des polynomes a
une indéterminée o coefficients dans Z. Cet ensemble n’est pas nouveau, car Z[X] est aussi le
sous-ensemble de Q[X] des polynémes dont tous les coefficients sont entiers.

Les polynomes a coefficients dans Z apparaissent beaucoup, mais il faut d’abord étudier les polynémes
a coefficients dans un corps pour les comprendre. Ce chapitre étudie K[X].

1.3 Degré d’un polynome

DEFINITION 13
n

Soit P(X) = Z a,X* un polynéme non nul.

k=0
On appelle degré de P, noté deg(P), le plus grand entier k tel que aj # 0.
Pour d = deg P, le nombre ag4 est le coefficient dominant de P.
Le nombre ag est appelé le coefficient constant de P.
On dit que P est un polynéme unitaire si son coefficient dominant vaut 1.
Par convention, le degré du polynéme nul est deg(0) = —cc.

EXEMPLES 14

Le polynéme 2X? + X + 1 n'est pas unitaire, mais X' + X3 +2 lest. On a deg(X" + X> +2) = 7.
Pour A € K* on a deg(\) =0, tandis que deg(0) = —oo.

Pour tout n > 0, on a deg(X") = n.

PROPOSITION 15
Soient P,Q € K[X]. On a alors :

1. deg(P + Q) < max(deg(P),deg(Q));

Si deg P # deg @, alors deg(P + Q) = max(deg(P), deg(Q)).
2. deg(P x Q) = deg(P) + deg(Q) ;
3. YA € K*, deg(\.P) = deg(P).

Preuve —
1. Si P =0 alors P+ Q = Q et le résultat est évident. Il en est de méme si @ = 0.
n m
Si P#0et @ #0, alors, en posant P = Zaka et Q = Zbk,Xk avec n = deg (P) et m = deg (Q), on a:
k=0 k=0

max(n,m)

P+Q= Z (ak—l—bk)Xk
k=0

Ainsi, cela donne :
deg (P + Q) < max (deg (P) ,deg (Q)) -
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2. SiP=0ouQ=0,alors PxQ=0c¢et:
deg (P Q) = deg (0) = —oo = deg (P) + deg (Q) -

n m
Sinon, on a P = Zak X* avec an #0et Q= Z b X* avec by, # 0. Cela donne :
k=0 k=0

PQ=>> (> aibj)X*.

keN i+j=k

Le coefficient de degré n + m est anbm # 0, et tous les coefficients de degré strictement supérieur & n +m
sont nuls. Donc, on a :

deg (P Q) = deg (P) + deg (Q) .

EXEMPLES 16
1. deg((X®+ X +3)+(X?+2)) =3;
2. deg((X?+ X +3)+ (—X*+3X+7)=1;
3. deg((X3+ X +2)(X5+3X*+2)) =8.

ProrosiTioN 17
Soit K[X] un corps. Soient P, Q € K[X].
On a P x @ =0 si et seulement si P =0 ou @ = 0.

Démonstration — On regarde le degré de P x Q).

REMARQUE 18 — Attention! L’écriture P(X) = Z apX"* avec ag, ..., a, € K nous dit seulement
k=0

que deg(P) < n. Il faut rajouter la condition a, # 0 pour avoir deg(P) = n.

EXEMPLE 19 — Quel est de degré du polynéme (X +1)" — (X — 1) ?

PROPOSITION 20

Soit K un corps.

Les polynoémes P € K[X] qui possedent un inverse pour la multiplication x sont les polynémes
constants et non-nuls.

Démonstration — On utilise I’équation P x QQ = 1, et les propriétés du degré des polynomes.

Ensemble K,,[X]

DEFINITION 21
Soient K un corps et n € N. On définit K,,[X] l'ensemble des polynomes sur K de degré inférieur
ou égal an :

K,[X] ={P € K[X], deg(P) < n}.

On verra que l'ensemble K,,[X] est un sous-espace vectoriel de (K[X],+,.), de dimension n + 1.

1.4 Fonctions polynomiales, évaluation d’un polynome

DEFINITION 22

Soit P(X) € K[X], avec P(X) = zn: apX*.
On appelle fonction polynomiale ;s:soociée au polynéme P(X), notée fp, la fonction définie par :
K —= K
freop o fe(x):= iakmk :
k=0
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DEFINITION 23

Soit P(X) € K[X], avec P(X) = Zaka. Soit a € K.
k=0
On appelle évaluation de P en a le nombre fp(a).

On note alors P(a) := fp(a) = > p_, ara®.

EXEMPLE 24 — La fonction x € R + ax?® + bz + ¢ est la fonction polynémiale associée a
P(X)=aX?+bX +ce€R[X].
On a alors P(1) = fp(1)=a+b+e¢, P(0)= fp(0)=04+0+c=c.

L’intérét de cette définition est de bien distinguer les trois objets que ’on peut manipuler : le
polynéme P(X), la fonction polynémiale fp, le nombre P(a) ou fp(a).
On utilise fp et P(a) pour étudier le polynéme P(X).

PROPOSITION 25

Soient P,Q € K[X], et A€ K. On a :
* frr@q=1rr+fq
e fap=Afp
* frxq = [r-fq-

Démonstration — On écrit P et ) avec leurs coefficients, puis P + @, AP, P x @, et on vérifie que
les fonctions polynomiales associées coincident.

Composition de polynomes

DEFINITION 26 .

Soient P,Q € K[X], avec P(X) = Zak XF.
k=0

On définit la composée des polynén;es P et Q, notée P o @, par le polynéme :
PoQ(X) = P(Q(X)) =Y ar Q(X)".
k=0

REMARQUE 27 —

1. Dans le cas particulier ot Q(X) =X, on a P(Q(X)) = P(X). C’est pourquoi on utilise aussi
bien les notations P que P(X) pour désigner ce polynome.

2. On fera attention au fait que 'opération de composition des polyndmes n’est pas distributive a
gauche avec +,.,x. En effet, en général on a :

Po(Q+R)(X) # PoQ(X)+PoR(X), Po(AX) # AP(X) et Po(QxR)(X) # PoQ(X)x PoR(X).

3. Pour fp : K=K et fo : K—= K les fonctions polynomiales associées auzx polynémes P et Q,
alors on a fpog = fro fqg.
La composée de polynomes est construite pour s’assimiler a une composée de fonctions.
C’est pourquoi elle ne se comporte pas trés bien avec l'addition et les multiplications.

EXEMPLE 28 — Pour P(X)=X?+2X +3,A=2, ¢t Q(X)=X+1, ona:

PoQX)=PX+1)(X+1)?+2(X+1)+3=X2+4X +6 et P(\.X) =4X2+4X +3,
tandis que Qo P(X) = P(X)+ P(1) = X? +2X +4 et A.P(X) =2X? +4X +6.

EXERCICE 1 — Soient P,Q € K[X]. Déterminer deg(P o Q) en fonction de deg(P) et deg(Q).
On commencera par étudier le cas ou P(X) = X*, Q(X) = X'

Grace a la notion de degré, on peut effectuer une action supplémentaire entre deux polynomes : la
division euclidienne.
Cet élément est fondamental pour toute 1’étude de la factorisation des polynomes.
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2 DIVISION EUCLIDIENNE DE POLYNOMES

2.1 Notion de divisibilité

DEFINITION 29

Soient A, B € K[X] deux polynémes.

On dit que A divise B, noté A|B, s’il existe un polynome C' € K[X] tel que B = AC.
On dit que B est un multiple de A, s’il existe un polynéme C' € K[X] tel que B = AC.

REMARQUE 30 — On peut toujours diviser un polynéme P par son coefficient dominant pour le
rendre unitaire.
C’est pourquoi on travaille parfois seulement avec des polynémes unitaires.

Cette relation de divisibilité sur K[X] est similaire a celle sur Z. Travailler "au coefficient dominant
pres” dans K[X] est égal a travailler “au signe prés” dans Z.

REMARQUE 31 — Si P est non-nul, pour Q un diviseur de P on a deg(Q) < deg(P). En effet la
relation P = R.QQ donne deg(P) = deg(RQ) = deg(R) + deg(Q).

Et comme P est non-nul, on a R # 0, donc deg(R) > 0, ce qui donne deg(Q) = deg(P) — deg(R) <
deg(P).

Les polynémes qui divisent P ont un degré compris entre 0 et deg(P).

EXEMPLE 32 — Soit P € K[X] non-nul. Pour tout A\ € K non-nul, on a P = \.(}P).
Autrement dit, tous les polynémes constants non-nuls (ceuzx de degré 0) sont des diviseurs de P, et

tous les polynéomes de la forme yP (les multiples de P par un scalaire non-nul) sont des diviseurs
de P.

Maintenant, soit Q de méme degré que P tel que Q| P. On a donc R € K[X] tel que P = R.Q.
En regardant les degrés, on obtient deg(P) = deg(RQ) = deg(R)+deg(Q). Comme deg(Q) = deg(P),
cela donne deg(R) = 0.

Ainsi, on a R(X) = X pour une certaine constante A € K*. Cela implique donc que Q(X) = +P(X).
En conclusion, les diviseurs de P qui sont de méme degré sont uniquement les multiples de P par
une constante.

L’arithmétique sur ’ensemble des polynémes K[X] est tres similaire & 'arithmétique sur 'ensemble
des entiers Z. Cela est dii au théoreme suivant.

2.2 Division euclidienne de polynomes

THEOREME 33 (Division euclidienne de polyndmes)
Soient A et B € K[X] avec B # 0.
Alors, il existe un unique couple (@, R) € K[X]? tel que :

A=QB+R avec deg R < deg B.

Preuve — L’unicité se montre comme pour la division euclidienne d’entiers : on suppose qu’il existe deux couples
possibles, et on montre qu’ils sont égaux.

Existence : Le cas B = A € K* (deg B = 0) est immédiat avec (Q, R) = (A\~1A,0). Supposons B non constant.

On proceéde par récurrence sur deg(A). On remarque d’une part que si deg(A) < deg(B), alors (Q, R) = (0, A).
D’autre part, si deg A > deg B, en écrivant :

A=apn X" +...4+a9, B=b,n X™ + ...+ by, avec anbm # 0,

a

on remarque que le polynéme A — L X""MPB est de degré strictement inférieur & deg(A), ce qui permet d’appliquer
m

I’hypothese de récurrence a ce dernier. O

REMARQUE 34 — Soient A, B € K[X] avec B non-nul. On a B|A si et seulement si le reste de la
division euclidienne de A par B est nul.

EXEMPLE 35 (Algorithme de la division euclidienne) —

On effectue une division euclidienne de polynomes en faisant descendre le degré du polynome a
diviser. Voici en exemple la division euclidienne de A = X° +4X* +2X3 + X2 — X — 1 par
B=X3-2X+3:
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X5 4+4X* 4+2Xx3 4+X?  —-X -1 | X3 -2X+3
4X*  44X3 —2X? X -1 [X?+4X+4
4X%  4+6X2 —-13X -1
6X%2 —5X —13

On trouve finalement X5 +4X*+2X3+ X2 - X -1 = (X3 -2X +3)(X?+4X +4)+ (6 X2 -5X —13).

3 POLYNOMES IRREDUCTIBLES, DECOMPOSITION EN FACTEURS
IRREDUCTIBLES

DEFINITION 36
Soit P € K[X]. On dit que P est un polynéme irréductible sur K si deg(P) > 1 et P n’est divible
que par lui-méme (& un multiple dans K pres) ou par les polynémes constants.

Un polynéme irréductible sur K est donc un polynome dont les diviseurs sont, au multiple dans K
pres, 1 et lui-méme. Tout comme un nombre premier est un entier dont les diviseurs sont, au signe
pres, 1 et lui-méme.

EXEMPLE 37 —

1. X241 drréductible sur R (écrire la division de X2 +1 par X +a et aboutir a une contradiction,),
mais n'est pas irréductible sur C : X2 +1 = (X +4)(X —1i).

2. Les polynéomes de degré 1, P(X) = aX + b, sont toujours irréductibles (quelque soit le corps
K).

3. X? — 2 est un polynéme irréductible sur Q, mais n’est pas irréductible sur R car X% — 2 =

(X +V2)(X = Vv2).

EXEMPLE 38 — Dans R[X] et Q[X], le polynome X>—1 se factorise en X>—1 = (X —1)(X2+X +1).
Mais dans C[X], il se factorise en X3 —1 = (X — 1)(X — j)(X — j?).

EXEMPLE 39 — Les diviseurs unitaires de X3 —5X + 6 = (X — 2)(X — 3) sont les suivants : 1,
X -2, X-3, (X-2)(X-3).

4 RACINES D’UN POLYNOME

DEFINITION 40 (Racine d’un polynéme)
Soient P € K[X] et o € K.
On dit que « est une racine du polynéme P si I'on a P(a) = fp(a) = 0.

PROPOSITION 41 (Lien entre racines et factorisation)
Soient P € K[X] et a € K.
Alors, a est une racine de P si et seulement si (X — a)|P(X).

Preuve — On écrit la division euclidienne de P(X) par (X —a) : P(X) = (X — a)Q(X) + R(X) avec deg(R) <
deg(X — A) = 1. R(X) est donc un polyndme constant : R(X) = . L’évaluation en a donne P(a) = 0.Q(a)+ R(a) = .

Ainsi, a est une racine de P si et seulement si R(X) = 0, si et seulement si (X — a) divise P(X). |

4.1 Multiplicité d’une racine, polynomes scindés

DEFINITION 42

Soient P € K[X], a € K, et k > 1.

On dit que a est une racine de multiplicité k de P si 'on a (X — a)*|P et (X —a)**1 | P.
Une racine de multiplicité 1 est appelée racine simple de P.

PROPOSITION 43
Soient P € K[X] et ay,...,a, € K, tels que ay,...,a, sont des racines de P de multiplicités
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respectives ajq, ...,a,.. Alors il existe @ € K[X] tel que :

PX)=(X—-a)™...(X —a)"Q(X) avec ,V1<i<r Qa;)#O0.

Démonstration —Admis.

DEFINITION 44

Soient P € K[X] et a € K.

On dit que a est de multiplicité 0 pour P sil'on a (X — «)°|P et (X —a)t JP.

Les nombres de multiplicité 0 sont tous les nombres qui ne sont pas des racines de P.

COROLLAIRE 45

Soit K un corps et P € K[X] de degré n > 0.

e Alors P possede au plus n racines, comptées avec leur multiplicité.

e Soit @ € K[X] avec deg(Q) < n, et tel que Q posseéde n + 1 racines ou plus.
Alors, @ est le polynome nul.

Preuve — Dans la proposition précédente, on a deg(P) =n =a1 + ...+ a, +deg(Q). Dot a1 +...+ar <n. O

DEFINITION 46 (Polyndme scindé)

Soit P € K[X] non-nul.

On dit que P est scindé s’il admet autant de racines (comptées avec multiplicité) que son degré.
Il est équivalent de dire que P(X) = a,, [[_; (X — 2;)*, pour des z1,...,2 € K.

On dit que P est scindé a racines simples si le polynome P est scindé et si toutes ses racines sont
distinctes.

Il est équivalent de dire que P(X) = a,, [, (X — 2;), pour des 21,...,2, € K distincts.

EXEMPLE 47 — Le polynéme X™ — 1 admet n racines dans C, qui sont les racines n-iemes de
l'unité. Donc, ce polynome est scindé a racines simples.

REMARQUE 48 — Nous verrons que les polynomes irréductibles de C[X] sont exactement les
polynomes de degré 1, et que les polyndmes irréductibles de R[X] sont ceux 1 et ceux de degré 2 de
discriminant strictement négatif (c’est-a-dire sans racines réelles). Cela est lié aux propriétés de R
et de C en analyse.

5 DERIVATION DANS K[X]

5.1 Dérivée d’un polynome

DEFINITION 49
Soit P € K[X] avec P = a, X™ + ... + ao.
On définit le polyndme dérivé de P, noté P’, le polynome :

P(X)=na, X" '+ (n—1Dap, 1 X" 24+ ... +a.
REMARQUE 50 — Pourn > 1 et a, # 0, le coefficient na,, est non-nul.

ProrosITION 51
Soit P € K[X]. On a deg(P’') = deg(P) — 1 si deg(P) > 1, et P'(X) = 0 sinon.

PROPOSITION 52 (Application linéaire de dérivation)
La fonction D : P € K[X]| — P’ € K[X] est une application linéaire.
De plus, Ker(D) = {\, A € K} est 'ensemble des polynémes constants. (P'(X) =0« P(X) = ap)

Démonstration —A faire apres le chapitre Applications linéaires.

PROPOSITION 53 (Formules de dérivation)
Soient P,Q € K[X], \€e K,m>1.0Ona:

1. (AP)(X)=AP(X);
2. (P+Q)(X)=P(X)+Q(X) (dérivée d’'une somme) ;
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3. ) =P(X)Q(X)+ P(X)Q'(X) (dérivée d'un produit) ;
4. (P™)(X) =mP'(X)P(X)™~! (dérivée d’'une puissance);
5. (PoQ)(X)=Q(X).(P' oQ)(X) (dérivée d’'une composée).

PROPOSITION 54 (Polynéme dérivé et fonction polynémiale, sur R)

Soient K = R et P € R[X]. Soient fp : x — P(x) et fp: : x — P'(x) les fonctions polynémiales
associées & P et P’.

Alors on a fp = (fp)'.

REMARQUE 55 — Dans le cadre des fonctions, la notion de dérivée a un sens sur R. Ainsi, on peut
identifier la dérivée d’un polynome réel a la dérivée de sa fonction polynémiale associée. Pour tout
corps K, Uopération de dérivation des polynomes de K[X] est bien définie.

Mais pour un corps comme C, dériver une fonction f : C — C n’a pas de sens pour le moment.
Il ne faudra donc pas confondre en général polyndme dérivé (qui existe) et dérivée de la fonction
polynéomiale (qui n’existe pas forcément).

5.2 Formule de Taylor

PROPOSITION 56 (Dérivées de (X — a)™)
Soient v € K, n > 1, k > 0. On pose P(X) = (X — a)™.
En notant P*) le polynéme dérivé k-ieme de P, on a :

n!
(n—k)!
PR(X)=0sik>n.

PH(X) = (X —a)"*sio<k<n

On en déduit que P (X) = n!, et que P*)(a) = 0si k # n.

Preuve — On démontre le résultat par récurrence sur k. O

THEOREME 57 (Formule de Taylor pour les polyndmes)
Soient a € K et P € K[X] de degré n. On a I’égalité suivante :

n (k)a /a
P:ZPk!( )(X_a)k:P(a)+P1(! )(X—a)+...+
k=0

Démonstration —Admis.

(n)
REMARQUE 58 — Si l’on choisit a = 0, on obtient la relation P(X) = P(0)+P’(0) X +.. .+ PT!(O)X”.
Ainsi, dans Uécriture P(X) = ag + a1 X + ... + a, X", les coefficients ay, de P sont associés aux

L . 3 P& (o
dérivées successives de P, par la relation aj, = k,( ),

EXEMPLE 59 — On a X2 —10X +1=1+1(X - 10) + (X - 10)2 = 1+ 10(X — 10) + (X — 10)2.
Appliquer la formule de Taylor a :

1. X34+ X?+X+leta=1;

2.2X*+2X +1eta=—1.

La formule de Taylor correspond & un changement de variables pour les polynémes. Au lieu d’écrire
P comme une combinaison linéaire de 1, X, X2,..., X", on I'écrit comme une combinaison linéaire
de 1,(X —a),(X —a)?,...,(X —a)™. Par rapport a ces nouvelles variables, les coefficients de P
changent, et la formule de Taylor fournit une expression tres pratique de ces coeflicients.

5.3 Caractérisation des racines multiples

PROPOSITION 60 (Caractérisation des racines simples)
Soient K un corps, a € K, et P € K[X].
L’élément a est une racine simple du polynéme P si et seulement si P(a) = 0 et P’(a) # 0.
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Preuve — Si P admet une racine b de multiplicité & > 1, on a alors P(X) = (X — b)*.Q(X), avec Q(b) # 0. En
dérivant, on obtient : P/(X) = (X — b)*Q’(X) + k(X — b)F~1Q(X).

Supposons que a est une racine simple de P. On a donc P(a) =0 et P/(X) = (X — a)Q'(X) + 1.Q(X). Cela donne
P'(a) =0+ Q(a) # 0.

Réciproquement, supposons que P(a) = 0 et P’(a) # 0. Alors a est une racine de P. Soit k la multiplicité de a. Si
k > 1, alors le polynéme (X — a)*~! s’annule en a, et on obtient : P’(a) = (a — a)Q’(a) + k(a — a)*~'Q(a) = 0.
Comme on a P’(a) # 0, a est donc de multiplicité 1. O

PROPOSITION 61 (Caractérisation des racines multiples)

Soient a € K, k > 1, et P € K[X].

Alors a est une racine de P de multiplicité k si et seulement si P(a), P'(a),...,P* Y (a) = 0 et
P®F)(a) # 0.

Preuve — C’est une conséquence immédiate de la formule de Taylor. En écrivant

P'(a) P . P

P = P(a)+ (X—a)+...+ (X —a)'+...+
1! n! n!

(X - a)nv

on peut remarquer que P(X) est un multiple de (X —a)* mais pas de (X —a)**! si et seulement si P(a),P’(a),..., P~ (a) =
0 et P*)(a) #0. O

EXEMPLE 62 — Dans C[X], pour w # 0, le polynome P(X) = X™ — w n’admet que des racines
simples. En effet, son polynéme dérivé est P'(X) =nX""1. Le polynéme P’ a 0 comme sele racine
(de multiplicité n — 1), alors que P(0) = —w # 0. Comme P et P’ n’ont pas de racines communes,
cela veut dire quand P(a) =0 on a P'(a) # 0.

5.4 Théoréeme de Rolle pour les polynomes réels

On rappelle les deux résultats d’analyse suivants, qui sont utiles pour étudier les polynémes a
coefficients réels.

PROPOSITION 63 (Théoréme des valeurs intermédiaires)

Soit I = [a,b] un intervalle de R. Soit f : [a,b] — R une fonction continue sur [a, b].

e Si f(a) # f(b), pour tout d €]f(a), f(b)[, il existe ¢ €]a, b[ tel que f(c) = d.

e Si f(a) <0et f(b) >0 (ou f(a) >0et f(b) <0), alors il existe ¢ €]a, b] tel que f(c) = 0.

PROPOSITION 64 (Théoréme de Rolle)

Soit I = [a,b] un intervalle de R. Soit f : [a,b] — R une fonction continue sur [a,b] et dérivable sur
la, bl.

Si f(a) = f(b), alors il existe ¢ €]a, b[ tel que f'(c) = 0.

COROLLAIRE 65

Soit P € R[X].

e Soient a,b deux racines de P distinctes.

Alors il existe ¢ €]a, b[ tel que P’(c) =0 (c est une racine de P).

e Si P possede r racines distinctes a1 < ag < ... < a,., alors le polynome P’ posséde au moins 7 — 1
racines by, ..., b._1 telles que b; €la;, a;11]-

P’ posseéde donc au moins r — 1 racines distinctes qui ne sont pas des racines de P.

Preuve — On utilise le théoréme de Rolle & P sur chaque intervalle [a;, a;j+1]. O

REMARQUE 66 — Pour P € R[X], le théoréme de Rolle permet de trouver des racines de P’.

1l ne dit pas comment calculer la valeur des racines by, ...,b._1, mais on a des informations sur le
nombre de racines distinctes de P’ et sur leur position.

Cela est trés important dans ’étude des polynémes réels/complexes comme fonctions, pour savoir
sur quels intervalles le polynéme prend des valeurs positives/négatives/nulles.

COROLLAIRE 67 (Polynomes réels scindés et dérivée)

Soit P € R[X] un polynéme scindé.

Alors P’ est scindé.

De plus, si P est scindé & racines simples alors P’ est scindé & racines simples.

10
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5.5 Racines complexes conjuguées de polynomes réels
LEMME 68

Soit P € R[X]. Soit « € C.

On a alors P(@) = P(«).

Preuve — On écrit P = ap X™ + ...+ ag avec a; € R. Alors, on a :

P@)=an@" +...+a1ad+ap =ana™ + ... Far1a+ ag = P(a).

PROPOSITION 69
Soit P € R[X]. Soit w € C. Soit k € N*.
Alors w est une racine complexe de P de multiplicité k ssi W est une racine de P de multiplicité k.

Preuve — Soit k € N*. Avec le lemme précédent, on a P(w) = 0, P/(w) = 0,..., P*E=D(w) = 0, PK*) (w) # 0 ssi
P(w) =0,P'(w) =0,..., P;=D(w) =0, P*)(w) # 0 ssi P(W) =0, P (@)=0,..., Pk V@) =0, P*) (@) #0, car
chaque polynéme P, P/, ..., P(*) est & coefficients réels. O

5.6 Racines d’un polynome et de son polynéme dérivé

ProposITION 70
Soit P € R[X]. Si a est une racine de P de multiplicité k (k > 1), alors a est aussi une racine de P’
de multiplicité k — 1.

Preuve — On a P(X) = (X — a)*.Q(X) avec Q(a) # 0. Alors, P'(X) = k(X — a)*"1Q(X) + (X — a)*Q'(X) =
(X — )~ (hQ(X) + (X — a)Q'(X)).

On obtient ainsi (X — a)*~1 | P/(X) et kQ(a) + (a — a)Q’(a) = kQ(a) + 0 = kQ(a) # 0, donc a est une racine de P’
de multiplicité k& — 1. O

REMARQUE 71 — Si a est une racine de P de multiplicité 1, alors a est de multiplicité 0 pour P’
(c’est-a-dire que (X — a)' |/P’, que a n’est pas une racine de P’).

Par exemple, pour P(X) = (X —1)(X —2), on a P'(X) =2X —3=2(X — 3).

Ainsi, toutes les racines multiples de P sont des racines de P’, et toutes les racines simples de P
ne sont pas des racines de P’.

Si lon connait beaucoup de racines de P, on connait ainsi beaucoup de racines de P’ (mais pas
toutes).

On ne peut par contre rien dire sur P’ si a n’est pas une racine de P.

Par exzemple, pour P(X) = (X — 2)30 + 1, 2 n’est pas une racine de P mais 2 est une racine de P’
de multiplicité 29.

6 DECOMPOSITION EN PRODUIT DE POLYNOMES IRREDUCTIBLES
DANS C[X] ET R[X]

6.1 Factorisation dans C[.X]

THEOREME 72 (Théoréme de D’alembert-Gauss)
Tout polynéme non constant de C[X] admet au moins une racine.

Démonstration —Ce théoreme, bien que tres fondamental, est admis.

COROLLAIRE 73 (Racines complexes d’un polynéme)
Soit P € C[X] un polynome de degré n, avec n € N*. Alors P posséde exactement n racines,
comptées avec multiplicité.

COROLLAIRE 74 (Polynémes irréductibles dans C)
Les seuls polynomes irréductibles de C[X] sont les polynémes de degré 1.

11
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COROLLAIRE 75 (Factorisation en produit de facteurs irréductibles dans C)
Soit P € C[X] de degré n > 1. Alors P se décompose en :

T

P = (47% H(X — Zi)ai,

=1

ou ai,...,q, sont des entiers non nuls et zq,...,z. sont des nombres complexes deux a deux
distincts.
Cette décomposition est unique & 'ordre des z; pres.

REMARQUE 76 — On peut aussi formuler le corollaire en disant que tout polynome P € C[X] se
décompose en un produit de polynomes de degré 1.

6.2 Factorisation dans R[X]

La situation dans R est relativement différente.

PROPOSITION 77 (Polynémes irréductibles dans R)
Les polynémes irréductibles de R[X] sont :

1. Les polynomes de degré 1, A(X — f3), avec A # 0;
2. Les polynomes de degré 2, aX? + bX + ¢, avec b? — 4ac < 0.

EXEMPLE 78 —

1. Le polynome X3 + 1 n'est pas irréductible dans R[X] car —1 est une racine. Il se décompose
en X3 +1=(X+1)(X?-X+1).

2. X4 +1 n'a pas de racines sur R mais n'est pas irréductible. Sa décomposition est :
X' 41=(X2-V2X +1)(X2+V2X +1).
3. Tout polynéme réel P de degré impair admet au moins une racine réelle. (Pourquoi ?)

COROLLAIRE 79 (Factorisation en produit de facteurs irréductibles dans R)
Soit P € R[X] de degré n > 1. Alors P se décompose en :

P=ay [J(X =) x [[(X®+¢; X +d;)7,

i=1 j=1

o aq,...,, B, ..., m sont des entiers non nuls, les b; sont distincts, les (c;, d;) sont distincts,
avec c? —4d; < 0.
Cette décomposition est unique & I'ordre I'ordre des b; et des (¢;,d;) pres.

Autrement dit, tout polynéme de R[X] s’écrit comme un produit de polynomes de degré 1 et de
polynémes de degré 2 a discriminant strictement négatif.

REMARQUE 80 (Factorisation dans Q?) — La situation est infiniment plus délicate dans Q[X].

Par exemple, pour P(X) = X* 41, les racines complezes de P sont exp(Z),exp(2Z),exp(2E), et
Tim
exp (7).

Ce polyndome est réductible dans R[X] car
X' 41=X*42X%+1-2X2 = (X2 —V2X + 1)(X?+V2X +1).
Les polynomes de droite sont de discriminant —1, et sont donc irréductibles.
Si P était réductible dans Q[X], on aurait P = QR, avec Q, R € Q[X]| non-constants. On aurait

donc P = QR dans R[X], donc Q(X) = X? +2X + 1. Mais /2 est irrationnel, donc un tel
polynéme n’est pas a coefficients rationnels. Ainsi, P est irréductible dans Q[X].

En fait, ’ensemble Q[X] posséde des polynémes irréductible de n’importe quel degré n.

12
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7 RELATIONS ENTRE COEFFICIENTS ET RACINES

Avec la factorisation, on a deux fagons d’écrire un polynéme P. Soit P(X) = a, X™ + ... + ag, soit
P(X)=1LP(X).
Il existe un lien fort entre ces deux écritures.

ProrosiTion 81
Soit P € K[X] un polynéme de degré n qui est scindé. Soient av, ..., a, les racines de P, comptées
n

avec multiplicité. Pour P(X) = a, X"+ ...+ ag et P(X) =a, H(X —@;),ona:

i=1
(n—1
o+ ... +ta, =— .
Qn
ag
aq X XOén:( ].)nf
an,

n

Preuve — Il faut développer le produit P = a,, H(X — ;) et identifier les coefficients devant X"~ 1 et devant X©
i=1

pour obtenir ces relations. O

EXEMPLE 82 — Dans le cas de polynémes unitaires (a, = 1), pour le degré 2 et 3, on obtient les
relations suivantes.

o]+ oy = —a
1. Soit P=X?+aX +b= (X —a1)(X — az). Alors ona:{ L
ajoe = b

2. Soit P=X?+axX?+a1 X +ag= (X —a1)(X —az)(X —az). Alors on a :
(a) a1 +as 4+ as = —as;
(b) aras + a1as + asas = ag ;
(c) arasas = —ag.
REMARQUE 83 (Détermination des racines d'un polynéme) — Soit P € K[X].
e Degré 1 : On a P(X)= XX —a) etiln’y arien a étudier.

e Degré 2 : On a P(X) = aX?+bX +c. Le discriminant A = b? — dac permet de dire si P posséde
ou non des racines dans le corps K, et de donner l’expression de ces racines en fonction de a, b, c.
Ces expressions utilisent 4+, X, —, l et /..

e Degré 3 : Il existe des formules appelées formules de Cardan qui permettent de dire si P posséde
ou non des racines dans le corps K, et de donner l’expression de ces racines en fonction des
coefficients ag, . ..,as. Ces expressions utilisent 4+, X, —, %, V- et /-, el sont un peu lourdes.

e Degré 4 : Il existe des formules appelées formules de Cardan qui permettent de dire si P posséde
ou non des racines dans le corps K, et de donner l’expression de ces racines en fonction des
coefficients ag, ...,aq. Ces expressions utilisent 4+, X, —, %, Vo et o, et sont tres lourdes.

e Degré 5 : Il n'existe aucune formule générale utilisant +, X, —, %, et {/-Vn > 2, qui permet
de dire si P posséde des racines dans le corps K, ni d’exprimer les racines de P en fonction des
coefficients ag, . .., as.

Autrement dit, il existe des polynomes P de degré 5 dans R[X] ou C[X] tels que leurs racines ne
sont €gales a aucune expression algébrique utilisant les opérations +, X, —, %, et /- Vn > 2 et les
coefficients ao, . .., as. Cela est par exemple le cas pour P(X) = X5 —6X + 3.

On peut estimer les racines de ce polyndme dans R ou C d laide d’algorithmes (trouver les lieux ot
P(z) est aussi proche de 0 que l’on veut), mais cela est moins efficace que de calculer des valeurs
approchées de sommes/produits/quotients de racines n-émes de nombres rationnels.

- Ainsi, si l’on vous demande de déterminer les racines d’un polynéme P de degré 3 ou plus, vous
aurez forcément des racines évidentes, des relations algébriques, ou des propriétés supplémentaires
pour déterminer des racines de P et vous ramener & un polynéme de degré 2 ou 1.

13
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7.1 Résolution de systemes a deux inconnues

PROPOSITION 84

Soient a,b € K. Les solutions du systeme { iJr Y icg
que a; et as sont les deux racines, si elles existent (éventuellement racines doubles), du polynéme
X?—aX +b=0.

sont exactement les couples (aq, o) tels

Preuve — En effet (a1, a2) est solution du systeme ssi

(X—oq)(X—ocz):Xz—(ozl +042)X+o¢1a2:X2—aX+b:O.

EXEMPLE 85 — On veut résoudre le systéme { i—’— 4 :__g

Un couple (z,y) = (a1, a2) est solution du systéme si et seulement si ay et ay sont racines du
polynéme X2 +3X +1. Or, les racines de ce polynomes sont —1 et —2, donc ’ensemble des couples
solutions est {(—1,—2),(—=2,—-1)}.

8 DECOMPOSITION EN ELEMENTS SIMPLES

Les polynomes étant analogues du point de vue algébrique aux nombres entiers relatifs, I'analogue
des nombres rationnels sont les fractions rationnelles (des quotients de polynémes). Plutét que
de construire formellement un quotient de polynomes, nous allons considérer le point de vue des
fonctions.

DEFINITION 86 (Fonction rationnelle)
Soit f : Dy — R une fonction d’'une variable réelle. On dit que f est une fonction rationelle s’il

existe deux polynémes P et () dans R[X] tel que pour tout z € Dy on a f(z) = ggg

Les fonctions rationnelles sont exactement les quotients de fonctions polynémiales. Elles peuvent
étre définies sur R tout entier, privé des racines de Q.

2 . .
EXEMPLE 87 — = — %, T T — % sont des fonctions rationnelles.

1
z(z+1)’

PROPOSITION 88
Soient f, g deux fonctions rationnelles, et A € R. Alors f + g, f.g, Af sont des fonctions rationnelles.

EXEMPLE89—Ona(xH¢)+(me)fo% 2.

Pour x € R différent de 0 et de —1 on a x(a:+1) =1_ z+1’ donc (z — 1)— (:c — m+1) =z~ z(x1+1)'

THEOREME 90 (Décomposition en éléments simples)

Soient (P, Q) € R[X]? avec Q # 0, et f: 2 ggxg

On pose Q(X) = A H (X — a;)™ H (X2 + b; X + ¢;)P la décomposition de @ en produit de
i=1 j=1

polynoémes irréductibles dans R[X].
Alors, il existe R € R[X], e;x € R pour (i,k) e N> avec 1 <i<retl1<k<a;, (firgir) €R?
pour (j,k) € N2 avec 1 <j<setl<k<L By, tels que :

s By
€ik fikx+ gjk
vz € Dy, f(z) +ZZ e T bt e
i=1 k=1 v j=1k=1 J J

De plus, cette décomposition est unique.

COROLLAIRE 91 (Cas ) a racines simples)

Soient (P, Q) € R[X]? avec Q # 0, & racines simples, et f : x> Plz)

Qx)”
On pose Q(X) = A [T(X —a;) [T (X?+b;X +¢;) la décomposition de Q en produit de polynomes
i=1 j=1

14
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irréductibles dans R[X].
Alors, il existe R € R[X], ; € R pour 1 <i <r, et (fj,9;) € R? pour 1 < j < s, tels que :

S
fiz+g;
Vz € Dy )+ ! .
5 F@) Zx—az Zx2+bx+c]

De plus, cette décomposition est unique.
EXEMPLE 92 — L’égalité FeEs)) +1) == —|— 1 correspond a la décomposition en éléments simples de
= w(m—i—l)
De méme, l’égalité i—f?’ = % =1+ % correspond a la décomposition en éléments simples
de x — ‘””*3
REMARQUE 93 — La forme générale de la décomposition en éléments simples est “lourde”, mais

dés que le polynome Q) posséde peu de racines ou que ses racines sont simples, le nombre de termes
n’est pas tres élevé.

Le nombre de coefficients e; i, fjr, gjx est égal & a1 + o+ ...+ + 261 + ... + 26, = deg(Q).
En général Q est de degré petit (2,3,4), il n’y a donc que peu de coefficients a déterminer.

Et, le polynome R est le quotient dans la division euclidienne de P par Q.

On peut donc le déterminer séparément en effectuant une division euclidienne.

Si deg(P) < deg(Q), alors on a automatiquement R = 0.

REMARQUE 94 — Pour f(z) = R(x) + 3211 4L, Goayr + 25= Dy %7 on peut
déterminer certains coefficients par un calcul de limite.

En effet, (x — a;)* f(x) s’écrit comme une somme de fractions polynomiales dont tous les termes
sont multiples de (x — a;) au numérateur, excepté un terme qui est constant et vaut e; q, .

Ainsi, on a limg_q, (2 — @) f(2)) = €0, -

De la méme facon, en notant z; et Z; les racines complexes conjuguées de X2+ bj X +cj, on a dans
C :lim.,., (22 +2bj+¢;)% f(2)) = 2;-f1,8, + 95,8, etlimayz((22+2bj+¢;)% f(2)) = %5 1,8, + 9.8, -
Cela permet de déterminer la paire (f;3,,95.5;)-

REMARQUE 95 — Considérons le cas ou R(z) = 0, c¢’est-a-dire ot f(x) = > 1 Y pey (xelak)k +
fir2tg

Z =1 Ek 1 W

On peut alors obtenir une somme de coefficients avec un calcul de limite.

En effet, xf(x) s’écrit comme une somme de fractions polynomiales dont tous les numérateurs sont

de degré inférieur ou €gal a celui des dénominateurs. Donc, chacune de ces fractions polynomiales a
une limite quand x tend vers 400, qui vaut soit e; 1, soit f; 1, soit 0. Ainsi, on a lim,_ oo (xf(z)) =

T
2 €1+ Z§=1 fia-
i=

Si les remarques précédentes ne sont pas assez efficaces pour déterminer la décomposition en
/12 . P(x) . . .y N . .

éléments simples de = — O(z)» Ce qui arrive en général lorsque ) possede des racines multiples, des
racines complexes conjuguées, ou est de trop grand degré, il existe une méthode générale basée sur

la résolution d’un systeme linéaire.

METHODE 96 — Déterminer la décomposition en éléments simples de la fonction rationnelle

P(z) .
T — @) *

o On effectue la division euclidienne de P par Q : P = AQ + B avec deg(B) < deg(Q).
On a alors R = A.
Si deg(P) < deg(Q), alors on a automatiquement R = 0.

Pa) A@Q)TBE)  R@)Q() _ Bl)
e Ona gy — R) = =4 o = Q@ o

Pour déterminer les coefficients e; i, fi k. gk, U suffit de le faire pour O(2)” qui est une

fonction rationnelle plus simple car deg(B) < deg(Q).

o On peut toujours déterminer ces coefficients en écrivant la forme de la décomposition en
éléments simples, et en développant celle-ci par une mise au dénominateur commun. On

obtient une équation de la forme Sgg g((";)) ot S(x) est un polyndme dont les coefficients

dépendent des e; 1, fix, 97, k.
Cette équation est vraie ssi on a B(x) = S(x). Et, deux fonctions polynémiales sont identiques
si et seulement si elles ont les mémes coefficients.
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Cela fournit un systéme linéaire de deg(Q) équations, comportant deg(Q) inconnues.
On peut alors résoudre ce systéme avec la méthode du Pivot pour obtenir son unique solution.

EXEMPLE 97 — Soit f : x — % On pose Dy =R\ {—2}. Il existe alors a € R et R € R[X]

tels que pour tout x € Dy on a f(r) = R(z) + ;45

On effectue la division euclidienne de X* +3X? —1 par X +2 : X* +3X? — 1= (X +2)(X3 -
2X2+7X —14) + 27.

Ainsi, pour x € Dy, on a f(x) =23 — 222 + 7o — 14 + a:+2

5

EXEMPLE 98 — Soit f: z +— m Les racines de Q(X) = X? —5X + 1 sont x1 = 5+2 et

xg = Lg/ﬁ On pose Dy =R\ {z1,z2}. Il existe alors (a,b) € R? tel que pour tout x € Dy on a
flo) = 325+ =2

Ona:athb= lgigr;122_>+oo(xf(x)) = limy oo (55=5,77) = 0, donc b = —a.

(x—x1) 1) _ 1 1

Et on a a = hmi_ml(( Z'l)f( )) = hmm_ml m = hmx_ml m = Tz = ﬁ
Ainsi, pour x € Dy, on a f(x) = + =1,

(7} 1 r—Io

EXEMPLE 99 — Soit f : @%’Z{% On pose Dy = R\ {1,—-2,3}. Il existe alors

(a,b,c) € R? telquepourtouthDf ona f(z)=5+ 29 b <

— 2_ —
Bt on o : a =l o((x +2)(2)) = limgo(E5700) = (550 = 2 =

. 2_
b=Tlim, 1((z — 1) f(2)) = 2Pt = & = —1.

De plus on a a+b+c =limz— oo xf(x) = limg—s 400 @5?{% =3.0Onadoncec=3—a—b=
15-7+45 _ 13

(SR

)

5 5
Ainst, pour x € Dy on a —(334_?5)(;2311)—8 ) %(Tj-z + =+ ;—_33)
EXEMPLE 100 (Dérivée logarithmique) — Soit f : v+ 5, avee P(x) = ] (x — a;)*.

=1

On pose Dy =R\ {a1,...,a,}.
D’aprés les formules de demvatwn on reconnazt que f est la dérivée de 1n(|P|) sur Dy.
Or, pour x € Dy, on a In(|P(z)|) = ln(H [(x —a;)*|) = Z In( i) = Z a; In(|lz — a;]).

i=1

T
On obtient alors que la dérivée de In(|P|) en x vaut : f(z) = (In(|P])) (z) = > -2

rx—a; "

Par unicité de la décomposition en éléments simples, on a ainsi obtenu la décomposition en éléments
simples de f.
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Bilan du contenu nécessaire 4 maitriser :

e Définition d’un polynéme (suite avec un nombre fini de termes non-nuls). Sens de I'inconnue
X. Coefficients d'un polynome. Ecriture P(X) = >";_, ax X*. Ensemble de polynomes K[X].

e Somme de polynémes P + (), multiplication par un scalaire \.P, produit de polynéomes P X Q.
Savoir calculer une somme et un produit de polynémes proprement (réarranger les coefficients
selon les puissances de X).

e Degré d'un polynome, coefficient dominant. Cas particulier du polyndéme nul. Degré d’une
somme et d’un produit de polynémes. Ensemble K, [X] de polynémes de degré majoré par n.
Savoir identifier le degré d’un polynome.

e Evaluation d’un polyndéme P en un nombre z, notée P(x). Fonction polynémiale associée a
P:fp:zeKw— P(z) e K

e Composée de polynémes P o (). Lien entre opérations entre polynomes et opérations entre
fonctions polyndmiales associées.

e Un polyndme unitaire est un polynome dont le coefficient dominant vaut 1.

e Division euclidienne de polynoémes : Il existe un unique couple (@, R) de polynomes tel que
P =AQ+ R, deg(R) < deg(Q).
Savoir calculer une division euclidienne de polynoémes. Liens avec la division euclidienne
d’entiers.

e Définition de A divise P. A divise P ssi le reste dans la div. eucl. de A par P est nul.

e Un polynéme P est irréductible si ses seuls diviseurs sont constants ou multiples de P (égaux
a1 ou P a un facteur pres).

e a est une racine du polynéme P si P(a) = 0. a est une racine ssi (X — a) divise P.
Multiplicité d’une racine a. Polynomes scindés, scindés a racines simples.

e Polynome dérivé P’. Savoir dériver un polynéme P. Degré de P’. Relation entre dérivée de P
et dérivée de fp (cas réel).
Caractérisation des racines multiples : a est une racine de P de multiplicité k ssi P(a) =
0,P'(a) =0,..., P*~D(a) =0 et P*)(a) # 0.

e Formule de Taylor pour les polynémes : Pour P de degré auplus n, ona P(X) = >, _, P(k,:!(a) (X—

a)k.
Savoir utiliser la formule de Taylor pour retrouver un polynéme P & partir de ses nombres
dérivés en un point a.

e Théoreme de Rolle pour les polynémes réels : Entre deux racines de P se trouve une racine
de P'.

e Pour P un polynome a coefficients réels et a une racine complexe de P de multiplicité k, a
est aussi une racine de P de multiplicité k. (racines complexes conjuguées)

o P est irréductible dans R[X] ssi P est de degré 1 ou de degré 2 a discriminant strictement
négatif. P est irréductible dans C[X] ssi P est de degré 1.

e Théoreme de décomposition en produit de facteurs irréductibles : Tout polynéme P non-
constant de C[X] (resp. R[X]) s’écrit comme un produit de polyndmes irréductibles.
Ce produit est unique a l'ordre pres des termes.

e Relations entre coefficients et racines pour les polynémes scindés.
Pour P de degré n et de racines a, . ..,an,onaay = (—1)"ay ...y et an—1 = —(a1+. . .+ay).

e (x,y) est solution du systeme "z +y = a et xy = b” ssi z et y sont les racines de P(X) =
X? — aX + b. Savoir résoudre un tel systeme d’équations.
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