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Chapitre 11
Polynômes
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2.2 Division euclidienne de polynômes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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Un polynôme s’écrit de la forme :

P (X) = anX
n + an−1X

n−1 + . . .+ a1X + a0,

où les ai s’appellent les coefficients de P et X où est l’indéterminée.
Le premier problème est de définir correctement ce que l’on veut dire par ”l’indéterminée X”,
de choisir à quel ensemble appartiennent les coefficients ai, et d’avoir les outils nécessaires pour
manipuler les polynômes efficacement.
On retrouvera les polynômes tant en analyse (par ex. les développements limités) qu’en algèbre (par
ex. polynôme caractéristique d’une application linéaire). Une bonne mâıtrise des produits, divisions
et factorisations de polynômes ainsi que de la caractérisation des racines est indispensable.

1 Polynômes, opérations sur les polynômes

1.1 Polynômes à une indéterminée

Dans tout ce chapitre, l’ensemble K désignera R ou C ou Q. Ces ensembles sont des corps.

Définition 1
Soit K un corps. On appelle indéterminée un objet X que l’on peut :

• additionner avec lui-même : X +X = 2X

• multiplier par un élément de K : λ×X

• multiplier avec lui-même : X2 = X ×X

Attention : L’indéterminée X n’est pas un nombre.

En fait, l’indéterminée X est une suite, et tous les polynômes sont des suites. La construction d’un
polynôme n’est pas au programme.

Définition 2
Soit K un corps. On appelle polynôme à une indéterminée à coefficients dans K toute expression de
la forme a0 + a1X + a2X

2 + . . .+ anX
n.

Ce sont des sommes finies, de multiples, des puissances de X.
L’ensemble des polynômes est noté K[X].
Un élément de K[X] se notera P (X) (pour indiquer qu’il dépend de l’indéterminée X).
On écrira au choix P (X) = a0 + a1X + . . .+ anX

n ou P (X) =
∑n

k=0 akX
k.

Les nombres a0, . . . , an sont dans K. Ce sont les coefficients de P .
Le nombre ak est appelé coefficient de degré k de P .

Par convention, pour P (X) = a0 + a1X + . . .+ anX
n, on pose ak = 0 pour tout k > n.

Remarque 3 (Définition formelle (HP)) —
Un polynôme P ∈ K[X] est une suite (ak)k qui possède un nombre fini de termes non-nuls.
Autrement dit, on a P = (ak)k≥0 = (a0, a1, . . . , an, 0, 0, . . .).
Pour k ∈ N, on définit Xk comme la suite qui vaut 1 au rang k et 0 ailleurs : Xk = (0, . . . , 0, 1, 0, . . .).
On sait déjà additionner deux suites et multiplier une suite par une constante. On a par exemple
(2, 1, 3, 0, 0, . . .) = 2.X0 + 1.X1 + 3.X2 = 3X2 + 2X + 1.
Pour P , cela donne : P = (a0, . . . , an, 0, . . .) = (a0, 0, . . .)+(0, a1, 0, . . .)+ . . .+(0, . . . , 0, an, 0, . . .) =
a0(1, 0, . . .) + a1(0, 1, 0, . . .) + . . .+ an(0, . . . , 0, 1, 0, . . .) = a0X

0 + a1X
1 + a2X

2 + . . .+ anX
n =

n∑
k=0

akX
k.

Remarque 4 — L’indéterminée X est un élément très important pour travailler dans K[X].
On écrit souvent P (X) à la place de P . Cette écriture est parfois très utile (par exemple pour
différencier un polynôme P (X) de sa fonction polynômiale associée x 7→ P (x)).

1.2 Opérations sur les polynômes

Définition 5 (Opérations +, .,× sur les polynômes)
Soit K un corps. On définit sur K[X] deux lois internes (+,×) et une loi externe (.). Soient
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P (X) = a0 + . . .+ anX
n, Q(X) = b0 + . . .+ bnX

n + . . .+ bmXm deux polynômes de K[X] (avec
n ≤ m).

1. L’addition, +, est définie par :

(a0 + . . .+ anX
n) + (b0 + . . .+ bnX

n + . . .+ bmXm)

(a0 + b0) + (a1 + b1)X + . . .+ (an + bn)X
n + bn+1X

n+1 + . . .+ bmXm.

Un tel objet est bien un polynôme.

Le polynôme nul, noté 0K[X] ou 0, est l’élément neutre pour l’addition +.

2. La multiplication par un scalaire de K, ., définie par :

λ.(a0 + . . .+ anX
n) = (λa0) + (λa1)X + . . .+ (λan)X

n.

3. La multiplication, ×, est définie par :

(a0+. . .+anX
n)×(b0+. . .+bnX

n+. . .+bmXm) = c0+c1X+. . .+cn+mXn+m, avec cr =

n∑
k=0

akbr−k.

Un tel objet est bien un polynôme car ck = 0 pour k > m+ n.

Le polynôme constant égal à 1, noté 1K[X] ou 1, est l’élément neutre pour la multiplication ×.

Proposition 6
Soit K un corps. Soient P,Q,R ∈ K[X]. Soit λ ∈ K. On a :

1. P + (Q+R) = (P +Q) +R (+ est associative) ;

2. P +Q = Q+ P (+ est commutative) ;

3. P + 0 = 0 + P = P (0 est le neutre de +) ;

4. λ.(P +Q) = λ.P + λ.Q (. est distributive sur +) ;

5. P × (Q×R) = (P ×Q)×R (× est associatve) ;

6. (P ×Q) = (Q× P ) (× est commutative) ;

7. (P × 1) = (1× P ) = P (1 est le neutre de ×) ;

8. P × (Q+R) = P ×Q+ P ×R = (Q+R)× P (× est distributive sur +) ;

9. P × (λ.Q) = λ.P ×Q (× et . commutent).

L’ensemble (K[X],+, .) est un K-espace vectoriel (comme R2 ou R3).
L’ensemble (K[X],+,×) est un anneau (comme R ou C).

Proposition 7 (Egalité entre polynômes)Soit K[X] un corps. Soit P (X) = a0+ . . .+anX
n ∈ K[X].

Deux polynômes P et Q sont égaux ssi tous leurs coefficients sont égaux. En particulier, P est le
polynôme nul si et seulement si tous ses coefficients sont nuls (ssi a0 = a1 = . . . = an = 0).

Dans la définition d’un polynôme P (X), les coefficients a0, . . . , an sont pris dans K sans aucune
condition. C’est-à-dire que l’on peut écrire : X2 = X2 + 0.X3 = X2 + 0.X100.
Il existe une façon d’écrire un polynôme P qui est sans ambiguité. Cette écriture utilise ce que l’on
appelle le coefficient dominant de P .

Proposition 8 (Equations produit-nul)Un produit de deux polynômes est nul si et seulement si
l’un des deux polynômes est nul.

Écriture d’un polynôme

Proposition 9
Tout polynôme P ∈ K[X] non nul s’écrit de manière unique de la forme :

P = anX
n + an−1X

n−1 + . . .+ a0,

avec a0, . . . , an ∈ K et an ̸= 0.
Le coefficient an non-nul est alors appelé le coefficient dominant de P .
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Preuve — Soit P (X) = a0 + . . .+ amXm un polynôme.

Comme P est non-nul, il existe au moins un coefficient ak de P tel que ak ̸= 0.

On pose n le plus grand indice tel que amn ̸= 0 (il existe bien). Cela veut dire que pour tout j > m, on a aj = 0.

Ainsi, on obtient que P (X) = a0 + . . . + anXn. Comme l’entier n est unique (c’est LE plus grand indice), cette

écriture est unique.

Remarque 10 — Pour écrire un produit de polynômes en utilisant le symbole
∑

, cela donne :(
n∑

k=0

akX
k

)
×

(
m∑

k=0

bkX
k

)
=

m+n∑
k=0

ckX
k, avec ck =

k∑
i=0

aibk−i.

Exemple 11 — Pour multiplier rapidement deux polynômes, on utilise la distributivité du produit
sur la somme et on regroupe les termes de même degré :

(X + 1)(X3 +X + 2) = X4(1.1) +X3(1.1) +X2(1.1) +X(1.1 + 1.2) + (1.2) = X4 +X3 +X2 + 3X + 2,

(X2 +X + 1)(X2 − 4X + 3) = X4(1.1) +X3(1.(−4) + 1.1) +X2(1.1 + 1.(−4) + 1.3) +X(1.3 + 1.(−4)) + (1.3)

= X4 − 3X3 −X + 3.

Remarque 12 — De la même façon, on peut aussi définir Z[X] l’ensemble des polynômes à
une indéterminée à coefficients dans Z. Cet ensemble n’est pas nouveau, car Z[X] est aussi le
sous-ensemble de Q[X] des polynômes dont tous les coefficients sont entiers.

Les polynômes à coefficients dans Z apparaissent beaucoup, mais il faut d’abord étudier les polynômes
à coefficients dans un corps pour les comprendre. Ce chapitre étudie K[X].

1.3 Degré d’un polynôme

Définition 13

Soit P (X) =

n∑
k=0

akX
k un polynôme non nul.

On appelle degré de P , noté deg(P ), le plus grand entier k tel que ak ̸= 0.
Pour d = degP , le nombre ad est le coefficient dominant de P .
Le nombre a0 est appelé le coefficient constant de P .
On dit que P est un polynôme unitaire si son coefficient dominant vaut 1.
Par convention, le degré du polynôme nul est deg(0) = −∞.

Exemples 14
Le polynôme 2X2 +X + 1 n’est pas unitaire, mais X7 +X3 + 2 l’est. On a deg(X7 +X3 + 2) = 7.
Pour λ ∈ K∗ on a deg(λ) = 0, tandis que deg(0) = −∞.
Pour tout n ≥ 0, on a deg(Xn) = n.

Proposition 15
Soient P ,Q ∈ K[X]. On a alors :

1. deg(P +Q) ≤ max(deg(P ),deg(Q)) ;
Si degP ̸= degQ, alors deg(P +Q) = max(deg(P ),deg(Q)).

2. deg(P ×Q) = deg(P ) + deg(Q) ;

3. ∀λ ∈ K∗, deg(λ.P ) = deg(P ).

Preuve —

1. Si P = 0 alors P +Q = Q et le résultat est évident. Il en est de même si Q = 0.

Si P ̸= 0 et Q ̸= 0, alors, en posant P =

n∑
k=0

ak Xk et Q =

m∑
k=0

bk Xk avec n = deg (P ) et m = deg (Q) , on a :

P +Q =

max(n,m)∑
k=0

(ak + bk)X
k.

Ainsi, cela donne :
deg (P +Q) ⩽ max (deg (P ) , deg (Q)) .

3
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2. Si P = 0 ou Q = 0, alors P ×Q = 0 et :

deg (P Q) = deg (0) = −∞ = deg (P ) + deg (Q) .

Sinon, on a P =

n∑
k=0

ak Xk avec an ̸= 0 et Q =

m∑
k=0

bk Xk avec bm ̸= 0. Cela donne :

PQ =
∑
k∈N

(
∑

i+j=k

aibj)X
k.

Le coefficient de degré n+m est anbm ̸= 0, et tous les coefficients de degré strictement supérieur à n+m
sont nuls. Donc, on a :

deg (P Q) = deg (P ) + deg (Q) .

Exemples 16

1. deg((X3 +X + 3) + (X2 + 2)) = 3 ;

2. deg((X3 +X + 3) + (−X3 + 3X + 7)) = 1 ;

3. deg((X3 +X + 2)(X5 + 3X4 + 2)) = 8.

Proposition 17
Soit K[X] un corps. Soient P,Q ∈ K[X].
On a P ×Q = 0 si et seulement si P = 0 ou Q = 0.

Démonstration — On regarde le degré de P ×Q.

Remarque 18 — Attention ! L’écriture P (X) =

n∑
k=0

akX
k avec a0, . . . , an ∈ K nous dit seulement

que deg(P ) ≤ n. Il faut rajouter la condition an ̸= 0 pour avoir deg(P ) = n.

Exemple 19 — Quel est de degré du polynôme (X + 1)n − (X − 1)n ?

Proposition 20
Soit K un corps.
Les polynômes P ∈ K[X] qui possèdent un inverse pour la multiplication × sont les polynômes
constants et non-nuls.

Démonstration — On utilise l’équation P ×Q = 1, et les propriétés du degré des polynômes.

Ensemble Kn[X]

Définition 21
Soient K un corps et n ∈ N. On définit Kn[X] l’ensemble des polynômes sur K de degré inférieur
ou égal à n :

Kn[X] = {P ∈ K[X], deg(P ) ≤ n}.

On verra que l’ensemble Kn[X] est un sous-espace vectoriel de (K[X],+, .), de dimension n+ 1.

1.4 Fonctions polynomiales, évaluation d’un polynôme

Définition 22

Soit P (X) ∈ K[X], avec P (X) =

n∑
k=0

akX
k.

On appelle fonction polynomiale associée au polynôme P (X), notée fP , la fonction définie par :

fP :

K → K

x 7→ fP (x) :=

n∑
k=0

akx
k .

4
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Définition 23

Soit P (X) ∈ K[X], avec P (X) =

n∑
k=0

akX
k. Soit a ∈ K.

On appelle évaluation de P en a le nombre fP (a).
On note alors P (a) := fP (a) =

∑n
k=0 aka

k.

Exemple 24 — La fonction x ∈ R 7→ ax2 + bx + c est la fonction polynômiale associée à
P (X) = aX2 + bX + c ∈ R[X].
On a alors P (1) = fP (1) = a+ b+ c, P (0) = fP (0) = 0 + 0 + c = c.

L’intérêt de cette définition est de bien distinguer les trois objets que l’on peut manipuler : le
polynôme P (X), la fonction polynômiale fP , le nombre P (a) ou fP (a).
On utilise fP et P (a) pour étudier le polynôme P (X).

Proposition 25
Soient P,Q ∈ K[X], et λ ∈ K. On a :

• fP+Q = fP + fQ

• fλP = λfP

• fP×Q = fP .fQ.

Démonstration — On écrit P et Q avec leurs coefficients, puis P +Q, λP , P ×Q, et on vérifie que
les fonctions polynômiales associées cöıncident.

Composition de polynômes

Définition 26

Soient P,Q ∈ K[X], avec P (X) =

n∑
k=0

ak X
k.

On définit la composée des polynômes P et Q, notée P ◦Q, par le polynôme :

P ◦Q(X) = P (Q(X)) :=

∞∑
k=0

ak Q(X)k.

Remarque 27 —

1. Dans le cas particulier où Q(X) = X, on a P (Q(X)) = P (X). C’est pourquoi on utilise aussi
bien les notations P que P (X) pour désigner ce polynôme.

2. On fera attention au fait que l’opération de composition des polynômes n’est pas distributive à
gauche avec +,.,×. En effet, en général on a :

P◦(Q+R)(X) ̸= P◦Q(X)+P◦R(X) , P◦(λX) ̸= λP (X) et P◦(Q×R)(X) ̸= P◦Q(X)×P◦R(X).

3. Pour fP : K → K et fQ : K → K les fonctions polynomiales associées aux polynômes P et Q,
alors on a fP◦Q = fP ◦ fQ.
La composée de polynômes est construite pour s’assimiler à une composée de fonctions.
C’est pourquoi elle ne se comporte pas très bien avec l’addition et les multiplications.

Exemple 28 — Pour P (X) = X2 + 2X + 3, λ = 2, et Q(X) = X + 1, on a :

P ◦Q(X) = P (X + 1)(X + 1)2 + 2(X + 1) + 3 = X2 + 4X + 6 et P (λ.X) = 4X2 + 4X + 3,
tandis que Q ◦ P (X) = P (X) + P (1) = X2 + 2X + 4 et λ.P (X) = 2X2 + 4X + 6.

Exercice 1 — Soient P,Q ∈ K[X]. Déterminer deg(P ◦Q) en fonction de deg(P ) et deg(Q).
On commencera par étudier le cas où P (X) = Xk, Q(X) = X l.

Grâce à la notion de degré, on peut effectuer une action supplémentaire entre deux polynômes : la
division euclidienne.
Cet élément est fondamental pour toute l’étude de la factorisation des polynômes.
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2 Division euclidienne de polynômes

2.1 Notion de divisibilité

Définition 29
Soient A, B ∈ K[X] deux polynômes.
On dit que A divise B, noté A|B, s’il existe un polynôme C ∈ K[X] tel que B = AC.
On dit que B est un multiple de A, s’il existe un polynôme C ∈ K[X] tel que B = AC.

Remarque 30 — On peut toujours diviser un polynôme P par son coefficient dominant pour le
rendre unitaire.
C’est pourquoi on travaille parfois seulement avec des polynômes unitaires.

Cette relation de divisibilité sur K[X] est similaire à celle sur Z. Travailler ”au coefficient dominant
près” dans K[X] est égal à travailler ”au signe près” dans Z.

Remarque 31 — Si P est non-nul, pour Q un diviseur de P on a deg(Q) ≤ deg(P ). En effet la
relation P = R.Q donne deg(P ) = deg(RQ) = deg(R) + deg(Q).
Et comme P est non-nul, on a R ̸= 0, donc deg(R) ≥ 0, ce qui donne deg(Q) = deg(P )− deg(R) ≤
deg(P ).
Les polynômes qui divisent P ont un degré compris entre 0 et deg(P ).

Exemple 32 — Soit P ∈ K[X] non-nul. Pour tout λ ∈ K non-nul, on a P = λ.( 1λP ).
Autrement dit, tous les polynômes constants non-nuls (ceux de degré 0) sont des diviseurs de P , et
tous les polynômes de la forme γP (les multiples de P par un scalaire non-nul) sont des diviseurs
de P .

Maintenant, soit Q de même degré que P tel que Q | P . On a donc R ∈ K[X] tel que P = R.Q.
En regardant les degrés, on obtient deg(P ) = deg(RQ) = deg(R)+deg(Q). Comme deg(Q) = deg(P ),
cela donne deg(R) = 0.
Ainsi, on a R(X) = λ pour une certaine constante λ ∈ K∗. Cela implique donc que Q(X) = 1

λP (X).
En conclusion, les diviseurs de P qui sont de même degré sont uniquement les multiples de P par
une constante.

L’arithmétique sur l’ensemble des polynômes K[X] est très similaire à l’arithmétique sur l’ensemble
des entiers Z. Cela est dû au théorème suivant.

2.2 Division euclidienne de polynômes

Théorème 33 (Division euclidienne de polynômes)
Soient A et B ∈ K[X] avec B ̸= 0.
Alors, il existe un unique couple (Q,R) ∈ K[X]2 tel que :

A = QB +R avec degR < degB.

Preuve — L’unicité se montre comme pour la division euclidienne d’entiers : on suppose qu’il existe deux couples
possibles, et on montre qu’ils sont égaux.
Existence : Le cas B = λ ∈ K∗ (degB = 0) est immédiat avec (Q,R) = (λ−1A, 0). Supposons B non constant.
On procède par récurrence sur deg(A). On remarque d’une part que si deg(A) < deg(B), alors (Q,R) = (0, A).
D’autre part, si degA ≥ degB, en écrivant :

A = anX
n + . . .+ a0, B = bmXm + . . .+ b0, avec anbm ̸= 0,

on remarque que le polynôme A−
an

bm
Xn−mB est de degré strictement inférieur à deg(A), ce qui permet d’appliquer

l’hypothèse de récurrence à ce dernier.

Remarque 34 — Soient A,B ∈ K[X] avec B non-nul. On a B|A si et seulement si le reste de la
division euclidienne de A par B est nul.

Exemple 35 (Algorithme de la division euclidienne) —
On effectue une division euclidienne de polynômes en faisant descendre le degré du polynôme à
diviser. Voici en exemple la division euclidienne de A = X5 + 4X4 + 2X3 + X2 − X − 1 par
B = X3 − 2X + 3 :

6
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X5 +4X4 +2X3 +X2 −X −1 X3 − 2X + 3
4X4 +4X3 −2X2 −X −1 X2 + 4X + 4

4X3 +6X2 −13X −1
6X2 −5X −13

On trouve finalement X5+4X4+2X3+X2−X−1 = (X3−2X+3)(X2+4X+4)+(6X2−5X−13).

3 Polynômes irréductibles, décomposition en facteurs
irréductibles

Définition 36
Soit P ∈ K[X]. On dit que P est un polynôme irréductible sur K si deg(P ) ≥ 1 et P n’est divible
que par lui-même (à un multiple dans K près) ou par les polynômes constants.

Un polynôme irréductible sur K est donc un polynôme dont les diviseurs sont, au multiple dans K
près, 1 et lui-même. Tout comme un nombre premier est un entier dont les diviseurs sont, au signe
près, 1 et lui-même.

Exemple 37 —

1. X2+1 irréductible sur R (écrire la division de X2+1 par X+a et aboutir à une contradiction),
mais n’est pas irréductible sur C : X2 + 1 = (X + i)(X − i).

2. Les polynômes de degré 1, P (X) = aX + b, sont toujours irréductibles (quelque soit le corps
K).

3. X2 − 2 est un polynôme irréductible sur Q, mais n’est pas irréductible sur R car X2 − 2 =
(X +

√
2)(X −

√
2).

Exemple 38 — Dans R[X] et Q[X], le polynôme X3−1 se factorise en X3−1 = (X−1)(X2+X+1).
Mais dans C[X], il se factorise en X3 − 1 = (X − 1)(X − j)(X − j2).

Exemple 39 — Les diviseurs unitaires de X3 − 5X + 6 = (X − 2)(X − 3) sont les suivants : 1,
X − 2, X − 3, (X − 2)(X − 3).

4 Racines d’un polynôme

Définition 40 (Racine d’un polynôme)
Soient P ∈ K[X] et α ∈ K.
On dit que α est une racine du polynôme P si l’on a P (α) = fP (α) = 0.

Proposition 41 (Lien entre racines et factorisation)
Soient P ∈ K[X] et a ∈ K.
Alors, a est une racine de P si et seulement si (X − a)|P (X).

Preuve — On écrit la division euclidienne de P (X) par (X − a) : P (X) = (X − a)Q(X) + R(X) avec deg(R) <

deg(X−A) = 1. R(X) est donc un polynôme constant : R(X) = λ. L’évaluation en a donne P (a) = 0.Q(a)+R(a) = λ.

Ainsi, a est une racine de P si et seulement si R(X) = 0, si et seulement si (X − a) divise P (X).

4.1 Multiplicité d’une racine, polynômes scindés

Définition 42
Soient P ∈ K[X], a ∈ K, et k ≥ 1.
On dit que a est une racine de multiplicité k de P si l’on a (X − a)k|P et (X − a)k+1 ∤ P .
Une racine de multiplicité 1 est appelée racine simple de P .

Proposition 43
Soient P ∈ K[X] et a1, . . . , ar ∈ K, tels que a1, . . . , ar sont des racines de P de multiplicités

7
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respectives α1, ...,αr. Alors il existe Q ∈ K[X] tel que :

P (X) = (X − a1)
α1 . . . (X − ar)

αrQ(X) avec , ∀1 ≤ i ≤ r, Q(ai) ̸= 0.

Démonstration —Admis.

Définition 44
Soient P ∈ K[X] et a ∈ K.
On dit que a est de multiplicité 0 pour P si l’on a (X − α)0|P et (X − a)1 ̸ |P .
Les nombres de multiplicité 0 sont tous les nombres qui ne sont pas des racines de P .

Corollaire 45
Soit K un corps et P ∈ K[X] de degré n ≥ 0.
• Alors P possède au plus n racines, comptées avec leur multiplicité.
• Soit Q ∈ K[X] avec deg(Q) ≤ n, et tel que Q possède n+ 1 racines ou plus.
Alors, Q est le polynôme nul.

Preuve — Dans la proposition précédente, on a deg(P ) = n = a1 + . . .+ ar + deg(Q). D’où a1 + . . .+ ar ≤ n.

Définition 46 (Polynôme scindé)
Soit P ∈ K[X] non-nul.
On dit que P est scindé s’il admet autant de racines (comptées avec multiplicité) que son degré.
Il est équivalent de dire que P (X) = an

∏r
i=1(X − zi)

αi , pour des z1, . . . , zr ∈ K.
On dit que P est scindé à racines simples si le polynôme P est scindé et si toutes ses racines sont
distinctes.
Il est équivalent de dire que P (X) = an

∏n
i=1(X − zi), pour des z1, . . . , zn ∈ K distincts.

Exemple 47 — Le polynôme Xn − 1 admet n racines dans C, qui sont les racines n-ièmes de
l’unité. Donc, ce polynôme est scindé à racines simples.

Remarque 48 — Nous verrons que les polynômes irréductibles de C[X] sont exactement les
polynômes de degré 1, et que les polynômes irréductibles de R[X] sont ceux 1 et ceux de degré 2 de
discriminant strictement négatif (c’est-à-dire sans racines réelles). Cela est lié aux propriétés de R
et de C en analyse.

5 Dérivation dans K[X]

5.1 Dérivée d’un polynôme

Définition 49
Soit P ∈ K[X] avec P = anX

n + . . .+ a0.
On définit le polynôme dérivé de P , noté P ′, le polynôme :

P ′(X) = nanX
n−1 + (n− 1)an−1X

n−2 + . . .+ a1.

Remarque 50 — Pour n ≥ 1 et an ̸= 0, le coefficient nan est non-nul.

Proposition 51
Soit P ∈ K[X]. On a deg(P ′) = deg(P )− 1 si deg(P ) ≥ 1, et P ′(X) = 0 sinon.

Proposition 52 (Application linéaire de dérivation)
La fonction D : P ∈ K[X] 7→ P ′ ∈ K[X] est une application linéaire.
De plus, Ker(D) = {λ, λ ∈ K} est l’ensemble des polynômes constants. (P ′(X) = 0 ⇔ P (X) = a0)

Démonstration —A faire après le chapitre Applications linéaires.

Proposition 53 (Formules de dérivation)
Soient P,Q ∈ K[X], λ ∈ K, m ≥ 1. On a :

1. (λP )′(X) = λP ′(X) ;

2. (P +Q)′(X) = P ′(X) +Q′(X) (dérivée d’une somme) ;

8
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3. (PQ)′(X) = P ′(X)Q(X) + P (X)Q′(X) (dérivée d’un produit) ;

4. (Pm)′(X) = mP ′(X)P (X)m−1 (dérivée d’une puissance) ;

5. (P ◦Q)′(X) = Q′(X).(P ′ ◦Q)(X) (dérivée d’une composée).

Proposition 54 (Polynôme dérivé et fonction polynômiale, sur R)
Soient K = R et P ∈ R[X]. Soient fP : x 7→ P (x) et fP ′ : x 7→ P ′(x) les fonctions polynômiales
associées à P et P ′.
Alors on a fP ′ = (fP )

′.

Remarque 55 — Dans le cadre des fonctions, la notion de dérivée a un sens sur R. Ainsi, on peut
identifier la dérivée d’un polynôme réel à la dérivée de sa fonction polynômiale associée. Pour tout
corps K, l’opération de dérivation des polynômes de K[X] est bien définie.
Mais pour un corps comme C, dériver une fonction f : C → C n’a pas de sens pour le moment.
Il ne faudra donc pas confondre en général polynôme dérivé (qui existe) et dérivée de la fonction
polynômiale (qui n’existe pas forcément).

5.2 Formule de Taylor

Proposition 56 (Dérivées de (X − a)n)
Soient α ∈ K, n ≥ 1, k ≥ 0. On pose P (X) = (X − α)n.
En notant P (k) le polynôme dérivé k-ième de P , on a :

P (k)(X) =
n!

(n− k)!
(X − α)n−k si 0 ≤ k ≤ n

P (k)(X) = 0 si k > n.

On en déduit que P (n)(X) = n!, et que P (k)(α) = 0 si k ̸= n.

Preuve — On démontre le résultat par récurrence sur k.

Théorème 57 (Formule de Taylor pour les polynômes)
Soient a ∈ K et P ∈ K[X] de degré n. On a l’égalité suivante :

P =

n∑
k=0

P (k)(a)

k!
(X − a)k = P (a) +

P ′(a)

1!
(X − a) + . . .+

P (n)(a)

n!
(X − a)n.

Démonstration —Admis.

Remarque 58 — Si l’on choisit a = 0, on obtient la relation P (X) = P (0)+P ′(0)X+. . .+P (n)(0)
n! Xn.

Ainsi, dans l’écriture P (X) = a0 + a1X + . . .+ anX
n, les coefficients ak de P sont associés aux

dérivées successives de P , par la relation ak = P (k)(0)
k! .

Exemple 59 — On a X2 − 10X +1 = 1+ 10
1 (X − 10) + 2

2 (X − 10)2 = 1+ 10(X − 10) + (X − 10)2.
Appliquer la formule de Taylor à :

1. X3 +X2 +X + 1 et α = 1 ;

2. 2X4 + 2X + 1 et α = −1.

La formule de Taylor correspond à un changement de variables pour les polynômes. Au lieu d’écrire
P comme une combinaison linéaire de 1, X,X2, . . . , Xn, on l’écrit comme une combinaison linéaire
de 1, (X − a), (X − a)2, . . . , (X − a)n. Par rapport à ces nouvelles variables, les coefficients de P
changent, et la formule de Taylor fournit une expression très pratique de ces coefficients.

5.3 Caractérisation des racines multiples

Proposition 60 (Caractérisation des racines simples)
Soient K un corps, a ∈ K, et P ∈ K[X].
L’élément a est une racine simple du polynôme P si et seulement si P (a) = 0 et P ′(a) ̸= 0.
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Preuve — Si P admet une racine b de multiplicité k ≥ 1, on a alors P (X) = (X − b)k.Q(X), avec Q(b) ̸= 0. En
dérivant, on obtient : P ′(X) = (X − b)kQ′(X) + k(X − b)k−1Q(X).

Supposons que a est une racine simple de P . On a donc P (a) = 0 et P ′(X) = (X − a)Q′(X) + 1.Q(X). Cela donne
P ′(a) = 0 +Q(a) ̸= 0.

Réciproquement, supposons que P (a) = 0 et P ′(a) ̸= 0. Alors a est une racine de P . Soit k la multiplicité de a. Si

k > 1, alors le polynôme (X − a)k−1 s’annule en a, et on obtient : P ′(a) = (a− a)Q′(a) + k(a− a)k−1Q(a) = 0.

Comme on a P ′(a) ̸= 0, a est donc de multiplicité 1.

Proposition 61 (Caractérisation des racines multiples)
Soient a ∈ K, k ≥ 1, et P ∈ K[X].
Alors a est une racine de P de multiplicité k si et seulement si P (a), P ′(a),...,P (k−1)(a) = 0 et
P (k)(a) ̸= 0.

Preuve — C’est une conséquence immédiate de la formule de Taylor. En écrivant

P = P (a) +
P ′(a)

1!
(X − a) + . . .+

P (i)

n!
(X − a)i + . . .+

P (n)

n!
(X − a)n,

on peut remarquer que P (X) est un multiple de (X−a)k mais pas de (X−a)k+1 si et seulement si P (a),P ′(a), . . . , P (k−1)(a) =

0 et P (k)(a) ̸= 0.

Exemple 62 — Dans C[X], pour ω ̸= 0, le polynôme P (X) = Xn − ω n’admet que des racines
simples. En effet, son polynôme dérivé est P ′(X) = nXn−1. Le polynôme P ′ a 0 comme sele racine
(de multiplicité n− 1), alors que P (0) = −ω ̸= 0. Comme P et P ′ n’ont pas de racines communes,
cela veut dire quand P (a) = 0 on a P ′(a) ̸= 0.

5.4 Théorème de Rolle pour les polynômes réels

On rappelle les deux résultats d’analyse suivants, qui sont utiles pour étudier les polynômes à
coefficients réels.

Proposition 63 (Théorème des valeurs intermédiaires)
Soit I = [a, b] un intervalle de R. Soit f : [a, b] → R une fonction continue sur [a, b].
• Si f(a) ̸= f(b), pour tout d ∈]f(a), f(b)[, il existe c ∈]a, b[ tel que f(c) = d.
• Si f(a) < 0 et f(b) > 0 (ou f(a) > 0 et f(b) < 0), alors il existe c ∈]a, b[ tel que f(c) = 0.

Proposition 64 (Théorème de Rolle)
Soit I = [a, b] un intervalle de R. Soit f : [a, b] → R une fonction continue sur [a, b] et dérivable sur
]a, b[.
Si f(a) = f(b), alors il existe c ∈]a, b[ tel que f ′(c) = 0.

Corollaire 65
Soit P ∈ R[X].
• Soient a, b deux racines de P distinctes.
Alors il existe c ∈]a, b[ tel que P ′(c) = 0 (c est une racine de P ).
• Si P possède r racines distinctes a1 < a2 < . . . < ar, alors le polynôme P ′ possède au moins r − 1
racines b1, . . . , br−1 telles que bi ∈]ai, ai+1[.
P ′ possède donc au moins r − 1 racines distinctes qui ne sont pas des racines de P .

Preuve — On utilise le théorème de Rolle à P sur chaque intervalle [ai, ai+1].

Remarque 66 — Pour P ∈ R[X], le théorème de Rolle permet de trouver des racines de P ′.
Il ne dit pas comment calculer la valeur des racines b1, . . . , br−1, mais on a des informations sur le
nombre de racines distinctes de P ′ et sur leur position.
Cela est très important dans l’étude des polynômes réels/complexes comme fonctions, pour savoir
sur quels intervalles le polynôme prend des valeurs positives/négatives/nulles.

Corollaire 67 (Polynômes réels scindés et dérivée)
Soit P ∈ R[X] un polynôme scindé.
Alors P ′ est scindé.
De plus, si P est scindé à racines simples alors P ′ est scindé à racines simples.
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5.5 Racines complexes conjuguées de polynômes réels

Lemme 68
Soit P ∈ R[X]. Soit α ∈ C.
On a alors P (α) = P (α).

Preuve — On écrit P = anXn + . . .+ a0 avec ai ∈ R. Alors, on a :

P (ᾱ) = anᾱ
n + . . .+ a1ᾱ+ a0 = anαn + . . .+ a1α+ a0 = P (α).

Proposition 69
Soit P ∈ R[X]. Soit w ∈ C. Soit k ∈ N∗.
Alors w est une racine complexe de P de multiplicité k ssi w est une racine de P de multiplicité k.

Preuve — Soit k ∈ N∗. Avec le lemme précédent, on a P (w) = 0, P ′(w) = 0, . . . , P (k−1)(w) = 0, P (k)(w) ̸= 0 ssi

P (w) = 0, P ′(w) = 0, . . . , P (k−1)(w) = 0, P (k)(w) ̸= 0 ssi P (w) = 0, P ′(w) = 0, . . . , P (k−1)(w) = 0, P (k)(w) ̸= 0, car

chaque polynôme P, P ′, . . . , P (k) est à coefficients réels.

5.6 Racines d’un polynôme et de son polynôme dérivé

Proposition 70
Soit P ∈ R[X]. Si a est une racine de P de multiplicité k (k ≥ 1), alors a est aussi une racine de P ′

de multiplicité k − 1.

Preuve — On a P (X) = (X − a)k.Q(X) avec Q(a) ̸= 0. Alors, P ′(X) = k(X − a)k−1Q(X) + (X − a)kQ′(X) =

(X − a)k−1(kQ(X) + (X − a)Q′(X)).

On obtient ainsi (X − a)k−1 | P ′(X) et kQ(a) + (a− a)Q′(a) = kQ(a) + 0 = kQ(a) ̸= 0, donc a est une racine de P ′

de multiplicité k − 1.

Remarque 71 — Si a est une racine de P de multiplicité 1, alors a est de multiplicité 0 pour P ′

(c’est-à-dire que (X − a)1 ̸| P ′, que a n’est pas une racine de P ′).
Par exemple, pour P (X) = (X − 1)(X − 2), on a P ′(X) = 2X − 3 = 2(X − 3

2 ).
Ainsi, toutes les racines multiples de P sont des racines de P ′, et toutes les racines simples de P
ne sont pas des racines de P ′.
Si l’on connâıt beaucoup de racines de P , on connâıt ainsi beaucoup de racines de P ′ (mais pas
toutes).
On ne peut par contre rien dire sur P ′ si a n’est pas une racine de P .
Par exemple, pour P (X) = (X − 2)30 + 1, 2 n’est pas une racine de P mais 2 est une racine de P ′

de multiplicité 29.

6 Décomposition en produit de polynômes irréductibles
dans C[X] et R[X]

6.1 Factorisation dans C[X]

Théorème 72 (Théorème de D’alembert-Gauss)
Tout polynôme non constant de C[X] admet au moins une racine.

Démonstration —Ce théorème, bien que très fondamental, est admis.

Corollaire 73 (Racines complexes d’un polynôme)
Soit P ∈ C[X] un polynôme de degré n, avec n ∈ N∗. Alors P possède exactement n racines,
comptées avec multiplicité.

Corollaire 74 (Polynômes irréductibles dans C)
Les seuls polynômes irréductibles de C[X] sont les polynômes de degré 1.
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Corollaire 75 (Factorisation en produit de facteurs irréductibles dans C)
Soit P ∈ C[X] de degré n ≥ 1. Alors P se décompose en :

P = an

r∏
i=1

(X − zi)
αi ,

où α1, . . . , αr sont des entiers non nuls et z1, . . . , zr sont des nombres complexes deux à deux
distincts.
Cette décomposition est unique à l’ordre des zi près.

Remarque 76 — On peut aussi formuler le corollaire en disant que tout polynôme P ∈ C[X] se
décompose en un produit de polynômes de degré 1.

6.2 Factorisation dans R[X]

La situation dans R est relativement différente.

Proposition 77 (Polynômes irréductibles dans R)
Les polynômes irréductibles de R[X] sont :

1. Les polynômes de degré 1, λ(X − β), avec λ ̸= 0 ;

2. Les polynômes de degré 2, aX2 + bX + c, avec b2 − 4ac < 0.

Exemple 78 —

1. Le polynôme X3 + 1 n’est pas irréductible dans R[X] car −1 est une racine. Il se décompose
en X3 + 1 = (X + 1)(X2 −X + 1).

2. X4 + 1 n’a pas de racines sur R mais n’est pas irréductible. Sa décomposition est :

X4 + 1 = (X2 −
√
2X + 1)(X2 +

√
2X + 1).

3. Tout polynôme réel P de degré impair admet au moins une racine réelle. (Pourquoi ?)

Corollaire 79 (Factorisation en produit de facteurs irréductibles dans R)
Soit P ∈ R[X] de degré n ≥ 1. Alors P se décompose en :

P = an

r∏
i=1

(X − ci)
αi ×

m∏
j=1

(X2 + cjX + dj)
βj ,

où α1, . . . , αr, βi, . . . , βm sont des entiers non nuls, les bi sont distincts, les (cj , dj) sont distincts,
avec c2j − 4dj < 0.
Cette décomposition est unique à l’ordre l’ordre des bi et des (cj , dj) près.

Autrement dit, tout polynôme de R[X] s’écrit comme un produit de polynômes de degré 1 et de
polynômes de degré 2 à discriminant strictement négatif.

Remarque 80 (Factorisation dans Q ?) — La situation est infiniment plus délicate dans Q[X].
Par exemple, pour P (X) = X4 + 1, les racines complexes de P sont exp( iπ4 ),exp(

3iπ
4 ),exp( 5iπ4 ), et

exp( 7iπ4 ).
Ce polynôme est réductible dans R[X] car

X4 + 1 = X4 + 2X2 + 1− 2X2 = (X2 −
√
2X + 1)(X2 +

√
2X + 1).

Les polynômes de droite sont de discriminant −1, et sont donc irréductibles.
Si P était réductible dans Q[X], on aurait P = QR, avec Q,R ∈ Q[X] non-constants. On aurait
donc P = QR dans R[X], donc Q(X) = X2 ±

√
2X + 1. Mais

√
2 est irrationnel, donc un tel

polynôme n’est pas à coefficients rationnels. Ainsi, P est irréductible dans Q[X].

En fait, l’ensemble Q[X] possède des polynômes irréductible de n’importe quel degré n.
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7 Relations entre coefficients et racines

Avec la factorisation, on a deux façons d’écrire un polynôme P . Soit P (X) = anX
n + . . .+ a0, soit

P (X) = ΠiPi(X).
Il existe un lien fort entre ces deux écritures.

Proposition 81
Soit P ∈ K[X] un polynôme de degré n qui est scindé. Soient α1, . . . , αn les racines de P , comptées

avec multiplicité. Pour P (X) = anX
n + . . .+ a0 et P (X) = an

n∏
i=1

(X − αi), on a :

α1 + . . .+ αn = −an−1

an
.

α1 × . . .× αn = (−1)n
a0
an

.

Preuve — Il faut développer le produit P = an

n∏
i=1

(X − αi) et identifier les coefficients devant Xn−1 et devant X0

pour obtenir ces relations.

Exemple 82 — Dans le cas de polynômes unitaires (an = 1), pour le degré 2 et 3, on obtient les
relations suivantes.

1. Soit P = X2 + aX + b = (X − α1)(X − α2). Alors on a :

{
α1 + α2 = −a

α1α2 = b

2. Soit P = X3 + a2X
2 + a1X + a0 = (X − α1)(X − α2)(X − α3). Alors on a :

(a) α1 + α2 + α3 = −a2 ;

(b) α1α2 + α1α3 + α2α3 = a1 ;

(c) α1α2α3 = −a0.

Remarque 83 (Détermination des racines d’un polynôme) — Soit P ∈ K[X].

• Degré 1 : On a P (X) = λ(X − α) et il n’y a rien à étudier.

• Degré 2 : On a P (X) = aX2+ bX + c. Le discriminant ∆ = b2− 4ac permet de dire si P possède
ou non des racines dans le corps K, et de donner l’expression de ces racines en fonction de a, b, c.
Ces expressions utilisent +,×,−, 1

. et
√
..

• Degré 3 : Il existe des formules appelées formules de Cardan qui permettent de dire si P possède
ou non des racines dans le corps K, et de donner l’expression de ces racines en fonction des
coefficients a0, . . . , a3. Ces expressions utilisent +,×,−, 1

. ,
√
. et 3

√
., et sont un peu lourdes.

• Degré 4 : Il existe des formules appelées formules de Cardan qui permettent de dire si P possède
ou non des racines dans le corps K, et de donner l’expression de ces racines en fonction des
coefficients a0, . . . , a4. Ces expressions utilisent +,×,−, 1

. ,
√
., 3

√
. et 4

√
., et sont très lourdes.

• Degré 5 : Il n’existe aucune formule générale utilisant +,×,−, 1
. , et n

√
. ∀n ≥ 2, qui permet

de dire si P possède des racines dans le corps K, ni d’exprimer les racines de P en fonction des
coefficients a0, . . . , a5.
Autrement dit, il existe des polynômes P de degré 5 dans R[X] ou C[X] tels que leurs racines ne
sont égales à aucune expression algébrique utilisant les opérations +,×,−, 1

. , et n
√
. ∀n ≥ 2 et les

coefficients a0, . . . , a5. Cela est par exemple le cas pour P (X) = X5 − 6X + 3.
On peut estimer les racines de ce polynôme dans R ou C à l’aide d’algorithmes (trouver les lieux où
P (x) est aussi proche de 0 que l’on veut), mais cela est moins efficace que de calculer des valeurs
approchées de sommes/produits/quotients de racines n-èmes de nombres rationnels.

- Ainsi, si l’on vous demande de déterminer les racines d’un polynôme P de degré 3 ou plus, vous
aurez forcément des racines évidentes, des relations algébriques, ou des propriétés supplémentaires
pour déterminer des racines de P et vous ramener à un polynôme de degré 2 ou 1.
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7.1 Résolution de systèmes à deux inconnues

Proposition 84

Soient a, b ∈ K. Les solutions du système

{
x+ y = a
xy = b

sont exactement les couples (α1, α2) tels

que α1 et α2 sont les deux racines, si elles existent (éventuellement racines doubles), du polynôme
X2 − aX + b = 0.

Preuve — En effet (α1, α2) est solution du système ssi

(X − α1)(X − α2) = X2 − (α1 + α2)X + α1α2 = X2 − aX + b = 0.

Exemple 85 — On veut résoudre le système

{
x+ y = −3
xy = 2

Un couple (x, y) = (α1, α2) est solution du système si et seulement si α1 et α2 sont racines du
polynôme X2 +3X +1. Or, les racines de ce polynômes sont −1 et −2, donc l’ensemble des couples
solutions est {(−1,−2), (−2,−1)}.

8 Décomposition en éléments simples

Les polynômes étant analogues du point de vue algébrique aux nombres entiers relatifs, l’analogue
des nombres rationnels sont les fractions rationnelles (des quotients de polynômes). Plutôt que
de construire formellement un quotient de polynômes, nous allons considérer le point de vue des
fonctions.

Définition 86 (Fonction rationnelle)
Soit f : Df → R une fonction d’une variable réelle. On dit que f est une fonction rationelle s’il

existe deux polynômes P et Q dans R[X] tel que pour tout x ∈ Df on a f(x) = P (x)
Q(x) .

Les fonctions rationnelles sont exactement les quotients de fonctions polynômiales. Elles peuvent
être définies sur R tout entier, privé des racines de Q.

Exemple 87 — x 7→ 1
x , x 7→ 1

x(x+1) , x 7→ 1−x2

1+x2 sont des fonctions rationnelles.

Proposition 88
Soient f, g deux fonctions rationnelles, et λ ∈ R. Alors f + g, f.g, λf sont des fonctions rationnelles.

Exemple 89 — On a (x 7→ 1
x−1 ) + (x 7→ 1

x+1 ) = x 7→ x+1+(x−1)
(x−1)(x+1) = x 7→ 2x

x2−1 .

Pour x ∈ R différent de 0 et de −1 on a 1
x(x+1) = 1

x−
1

x+1 , donc (x 7→ 1
x )−(x 7→ 1

x+1 ) = x 7→ 1
x(x+1) .

Théorème 90 (Décomposition en éléments simples)

Soient (P,Q) ∈ R[X]2 avec Q ̸= 0, et f : x 7→ P (x)
Q(x) .

On pose Q(X) = λ
r∏

i=1

(X − ai)
αi

s∏
j=1

(X2 + bjX + cj)
βj la décomposition de Q en produit de

polynômes irréductibles dans R[X].
Alors, il existe R ∈ R[X], ei,k ∈ R pour (i, k) ∈ N2 avec 1 ≤ i ≤ r et 1 ≤ k ≤ αi , (fj,k, gj,k) ∈ R2

pour (j, k) ∈ N2 avec 1 ≤ j ≤ s et 1 ≤ k ≤ βj , tels que :

∀x ∈ Df , f(x) = R(x) +

r∑
i=1

αi∑
k=1

ei,k
(x− ai)k

+

s∑
j=1

βj∑
k=1

fj,kx+ gj,k
(x2 + bjx+ cj)k

.

De plus, cette décomposition est unique.

Corollaire 91 (Cas Q à racines simples)

Soient (P,Q) ∈ R[X]2 avec Q ̸= 0, à racines simples, et f : x 7→ P (x)
Q(x) .

On pose Q(X) = λ
r∏

i=1

(X − ai)
s∏

j=1

(X2 + bjX + cj) la décomposition de Q en produit de polynômes
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irréductibles dans R[X].
Alors, il existe R ∈ R[X], ei ∈ R pour 1 ≤ i ≤ r, et (fj , gj) ∈ R2 pour 1 ≤ j ≤ s , tels que :

∀x ∈ Df , f(x) = R(x) +

r∑
i=1

ei
x− ai

+

s∑
j=1

fjx+ gj
x2 + bjx+ cj

.

De plus, cette décomposition est unique.

Exemple 92 — L’égalité 1
x(x+1) = 1

x + −1
x+1 correspond à la décomposition en éléments simples de

x 7→ 1
x(x+1) .

De même, l’égalité x+3
x−1 = x−1+1+3

x−1 = 1 + 4
x−1 correspond à la décomposition en éléments simples

de x 7→ x+3
x−1 .

Remarque 93 — La forme générale de la décomposition en éléments simples est ”lourde”, mais
dès que le polynôme Q possède peu de racines ou que ses racines sont simples, le nombre de termes
n’est pas très élevé.
Le nombre de coefficients ei,k, fj,k, gj,k est égal à α1 + α2 + . . .+ αr + 2β1 + . . .+ 2βs = deg(Q).
En général Q est de degré petit (2, 3, 4), il n’y a donc que peu de coefficients à déterminer.
Et, le polynôme R est le quotient dans la division euclidienne de P par Q.
On peut donc le déterminer séparément en effectuant une division euclidienne.
Si deg(P ) < deg(Q), alors on a automatiquement R = 0.

Remarque 94 — Pour f(x) = R(x) +
∑r

i=1

∑αi

k=1
ei,k

(x−ai)k
+
∑s

j=1

∑βj

k=1
fj,kx+gj,k

(x2+bjx+cj)k
, on peut

déterminer certains coefficients par un calcul de limite.
En effet, (x− ai)

αif(x) s’écrit comme une somme de fractions polynômiales dont tous les termes
sont multiples de (x− ai) au numérateur, excepté un terme qui est constant et vaut ei,αi

.
Ainsi, on a limx→ai((x− ai)

αif(x)) = ei,αi .
De la même façon, en notant zj et zj les racines complexes conjuguées de X2 + bjX + cj , on a dans
C : limz→zj ((z

2+zbj+cj)
βjf(z)) = zj .fj,βj

+gj,βj
et limz→zj ((z

2+zbj+cj)
βjf(z)) = zj .fj,βj

+gj,βj
.

Cela permet de déterminer la paire (fj,βj
, gj,βj

).

Remarque 95 — Considérons le cas où R(x) = 0, c’est-à-dire où f(x) =
∑r

i=1

∑αi

k=1
ei,k

(x−ai)k
+∑s

j=1

∑βj

k=1
fj,kx+gj,k

(x2+bjx+cj)k
.

On peut alors obtenir une somme de coefficients avec un calcul de limite.
En effet, xf(x) s’écrit comme une somme de fractions polynômiales dont tous les numérateurs sont
de degré inférieur ou égal à celui des dénominateurs. Donc, chacune de ces fractions polynômiales a
une limite quand x tend vers +∞, qui vaut soit ei,1, soit fj,1, soit 0. Ainsi, on a limx→+∞(xf(x)) =
r∑

i=1

ei,1 +
∑s

j=1 fj,1.

Si les remarques précédentes ne sont pas assez efficaces pour déterminer la décomposition en

éléments simples de x 7→ P (x)
Q(x) , ce qui arrive en général lorsque Q possède des racines multiples, des

racines complexes conjuguées, ou est de trop grand degré, il existe une méthode générale basée sur
la résolution d’un système linéaire.

Méthode 96 — Déterminer la décomposition en éléments simples de la fonction rationnelle

x 7→ P (x)
Q(x) :

• On effectue la division euclidienne de P par Q : P = AQ+B avec deg(B) < deg(Q).
On a alors R = A.
Si deg(P ) < deg(Q), alors on a automatiquement R = 0.

• On a P (x)
Q(x) −R(x) = A(x)Q(x)+B(x)

Q(x) − R(x)Q(x)
Q(x) = B(x)

Q(x) .

Pour déterminer les coefficients ei,k, fj,k, gj,k, il suffit de le faire pour B(x)
Q(x) , qui est une

fonction rationnelle plus simple car deg(B) < deg(Q).

• On peut toujours déterminer ces coefficients en écrivant la forme de la décomposition en
éléments simples, et en développant celle-ci par une mise au dénominateur commun. On

obtient une équation de la forme B(x)
Q(x) =

S(x)
Q(x) où S(x) est un polynôme dont les coefficients

dépendent des ei,k, fj,k, gj, k.
Cette équation est vraie ssi on a B(x) = S(x). Et, deux fonctions polynômiales sont identiques
si et seulement si elles ont les mêmes coefficients.
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Cela fournit un système linéaire de deg(Q) équations, comportant deg(Q) inconnues.
On peut alors résoudre ce système avec la méthode du Pivot pour obtenir son unique solution.

Exemple 97 — Soit f : x 7→ x4+3x2−1
(x+2) . On pose Df = R \ {−2}. Il existe alors a ∈ R et R ∈ R[X]

tels que pour tout x ∈ Df on a f(x) = R(x) + a
x+2 .

On effectue la division euclidienne de X4 + 3X2 − 1 par X + 2 : X4 + 3X2 − 1 = (X + 2)(X3 −
2X2 + 7X − 14) + 27.
Ainsi, pour x ∈ Df , on a f(x) = x3 − 2x2 + 7x− 14 + 27

x+2 .

Exemple 98 — Soit f : x 7→ 1
x2−5x+1 . Les racines de Q(X) = X2 − 5X + 1 sont x1 = 5+

√
21

2 et

x2 = 5−
√
21

2 . On pose Df = R \ {x1, x2}. Il existe alors (a, b) ∈ R2 tel que pour tout x ∈ Df on a

f(x) = a
x−x1

+ b
x−x2

.
On a : a+ b = limx→+∞(xf(x)) = limx→+∞( x

x2−5x+1 ) = 0, donc b = −a.

Et, on a a = limx→x1
((x− x1)f(x)) = limx→x1

(x−x1)
(x−x1)(x−x2)

= limx→x1

1)
(x−x2)

= 1
x1−x2

= 1√
21
.

Ainsi, pour x ∈ Df , on a f(x) = 1√
21
( 1
x−x1

+ −1
x−x2

).

Exemple 99 — Soit f : x 7→ 3x2−2x+5
(x+2)(x−1)(x−3) . On pose Df = R \ {1,−2, 3}. Il existe alors

(a, b, c) ∈ R3 tel que pour tout x ∈ Df on a f(x) = a
x+2 + b

x−1 + c
x−3 .

Et on a : a = limx→−2((x+ 2)f(x)) = limx→−2(
3x2−2x+5
(x−1)(x−3) ) =

3(−2)2−2(−2)+5
(−2−1)(−2−3) = 21

15 = 7
5 ,

b = limx→1((x− 1)f(x)) = 3(1)2−2(1)+5
(1+2)(1−3) = 6

−6 = −1.

De plus on a a+ b+ c = limx→+∞ xf(x) = limx→+∞
3x2−2x+5

(x+2)(x−1)(x−3) = 3. On a donc c = 3−a− b =
15−7+5

5 = 13
5 .

Ainsi, pour x ∈ Df on a 3x2−2x+5
(x+2)(x−1)(x−3) =

1
5 (

7
x+2 + −5

x−1 + 13
x−3 ).

Exemple 100 (Dérivée logarithmique) — Soit f : x 7→ P ′(x)
P (x) , avec P (x) =

r∏
i=1

(x− ai)
αi .

On pose Df = R \ {a1, . . . , ar}.
D’après les formules de dérivation, on reconnâıt que f est la dérivée de ln(|P |) sur Df .

Or, pour x ∈ Df , on a ln(|P (x)|) = ln(
r∏

i=1

|(x− ai)
αi |) =

r∑
i=1

ln(|x− ai|αi) =
r∑

i=1

αi ln(|x− ai|).

On obtient alors que la dérivée de ln(|P |) en x vaut : f(x) = (ln(|P |))′(x) =
r∑

i=1

αi

x−ai
.

Par unicité de la décomposition en éléments simples, on a ainsi obtenu la décomposition en éléments
simples de f .
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Bilan du contenu nécessaire à mâıtriser :

• Définition d’un polynôme (suite avec un nombre fini de termes non-nuls). Sens de l’inconnue
X. Coefficients d’un polynôme. Ecriture P (X) =

∑n
k=0 akX

k. Ensemble de polynômes K[X].

• Somme de polynômes P +Q, multiplication par un scalaire λ.P , produit de polynômes P ×Q.
Savoir calculer une somme et un produit de polynômes proprement (réarranger les coefficients
selon les puissances de X).

• Degré d’un polynôme, coefficient dominant. Cas particulier du polynôme nul. Degré d’une
somme et d’un produit de polynômes. Ensemble Kn[X] de polynômes de degré majoré par n.
Savoir identifier le degré d’un polynôme.

• Evaluation d’un polynôme P en un nombre x, notée P (x). Fonction polynômiale associée à
P : fP : x ∈ K 7→ P (x) ∈ K.

• Composée de polynômes P ◦Q. Lien entre opérations entre polynômes et opérations entre
fonctions polynômiales associées.

• Un polynôme unitaire est un polynôme dont le coefficient dominant vaut 1.

• Division euclidienne de polynômes : Il existe un unique couple (Q,R) de polynômes tel que
P = AQ+R, deg(R) < deg(Q).
Savoir calculer une division euclidienne de polynômes. Liens avec la division euclidienne
d’entiers.

• Définition de A divise P . A divise P ssi le reste dans la div. eucl. de A par P est nul.

• Un polynôme P est irréductible si ses seuls diviseurs sont constants ou multiples de P (égaux
à 1 ou P à un facteur près).

• a est une racine du polynôme P si P (a) = 0. a est une racine ssi (X − a) divise P .
Multiplicité d’une racine a. Polynômes scindés, scindés à racines simples.

• Polynôme dérivé P ′. Savoir dériver un polynôme P . Degré de P ′. Relation entre dérivée de P
et dérivée de fP (cas réel).
Caractérisation des racines multiples : a est une racine de P de multiplicité k ssi P (a) =
0,P ′(a) = 0,. . ., P (k−1)(a) = 0 et P (k)(a) ̸= 0.

• Formule de Taylor pour les polynômes : Pour P de degré au plus n, on a P (X) =
∑n

k=0
P (k)(a)

k! (X−
a)k.
Savoir utiliser la formule de Taylor pour retrouver un polynôme P à partir de ses nombres
dérivés en un point a.

• Théorème de Rolle pour les polynômes réels : Entre deux racines de P se trouve une racine
de P ′.

• Pour P un polynôme à coefficients réels et a une racine complexe de P de multiplicité k, a
est aussi une racine de P de multiplicité k. (racines complexes conjuguées)

• P est irréductible dans R[X] ssi P est de degré 1 ou de degré 2 à discriminant strictement
négatif. P est irréductible dans C[X] ssi P est de degré 1.

• Théorème de décomposition en produit de facteurs irréductibles : Tout polynôme P non-
constant de C[X] (resp. R[X]) s’écrit comme un produit de polynômes irréductibles.
Ce produit est unique à l’ordre près des termes.

• Relations entre coefficients et racines pour les polynômes scindés.
Pour P de degré n et de racines α1, . . . , αn, on a a0 = (−1)nα1 . . . αn et an−1 = −(α1+. . .+αn).

• (x, y) est solution du système ”x + y = a et xy = b” ssi x et y sont les racines de P (X) =
X2 − aX + b. Savoir résoudre un tel système d’équations.
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