
Lycée du Diadème PTSI, Année 2025-2026

F e u i l l e d e T P no 8 - T r i s

Objectifs de la séance

• Présenter plusieurs méthodes pour trier une liste sur les éléments d’un
ensemble ordonné.

• Tester ces programmes, réfléchir au jeu de tests, évaluer la complexité
théorique et voir la cohérence avec des tests chronométriques.

Afin de tester les algorithmes de tris étudiés dans ce TP, on désire construire
des listes d’entiers ordonnées ou non et de longueurs variables.

Par la suite, on utilisera le générateur de nombre aléatoire randint de
la librairie Python random. On pourra consulter l’aide avec la commande
help(random.randint).

Exercice 1. 1. Construire, trois listes L10, L1000 et L10000 contenant les
entiers [N − 1,N − 2. . .,0] avec N ∈ {10, 1000, 10000} respectivement.

2. Ecrire une fonction gen_liste(n,N) permettant de générer aléatoirement
une liste de taille n et dont les éléments sont des entiers compris entre 0
et N .

3. Construire, trois listes A10, A1000 et A10000 de taille N ∈
{10, 1000, 10000} respectivement, qui contiennent des entiers choisis cha-
cun aléatoirement entre 0 et N − 1.

Il est possible de mesurer le temps d’exécution d’une fonction en utilisant la
fonction time de la librairie time. Pour éviter de polluer le code d’une fonction
dont on veut mesurer le temps d’exécution, il est préférable d’exécuter à part
ces lignes de commandes :

t1 = time()
fonctionaevaluer(args)
print(time() - t1)

On présente dans cette section des algorithmes de tris en place. Dans chaque
cas, le programme correspondant reçoit une liste (ou un tableau) sur lequel il
agit, mais ne retourne rien. De plus, il n’utilise pas de tableau auxiliaires. Ce
sont donc des algorithmes à effet de bord.

Exercice 2. Écrire une fonction echange(L,i,j) permettant de procéder à
l’échange des éléments L[i] et L[j] dans la liste L.
Contrainte : Cette fonction ne doit contenir qu’une seule ligne d’instructions
en dehors de la ligne d’introduction et de return (NONE ici).

Exercice 3 (Tri par sélection). Dans le tri par sélection, on cherche le plus
petit élément du tableau entré en argument et on le place en position initiale
(par exemple par un échange), puis on recommence avec la recherche du plus
petit élément parmi ceux restants etc. . . Voici le pseudo-code de l’algorithme :

Algorithme 1 — Le tri par sélection

Entrées : une liste d’éléments à ordonner
Sorties : rien, mais la liste est ordonnée lorsque l’on sort de la

procédure
1 pour i de 0 à |L|-1 faire
2 Trouver la position j du minimum des |L| − i derniers éléments

du tableau ;
3 L[i] ↔ L[j] ;

4 fin

1. Écrire une fonction select(L) permettant de trier la liste L par cet
algorithme. Cette fonction ne renvoie rien (return sans argument).

2. Tester le programme sur les listes précédemment définies.

3. En fonction de la longueur n de la liste, quel est le nombre d’échanges
d’éléments dans le meilleur des cas ? Dans le pire des cas ? Il s’agit de la
complexité dans le meilleur et le pire des cas.

4. En testant sur plusieurs listes A1000 et A10000 avec la fonction time,
vérifier que la complexité moyenne de cet algorithme est un O(n2).

Exercice 4 (Tri par insertion). Cette fois, l’idée consiste à trier les éléments
de la liste à mesure de la lecture de celle-ci. On suppose qu’après la k-ième
itération, les k premiers éléments de la liste sont reclassés dans l’ordre. La
k + 1-ième itération consiste à insérer à sa place le (k + 1)-ième élément parmi
les précédents déjà triés.
On demande que cette insertion soit obtenue par échanges successifs avec
les termes déjà positionnés (du terme d’indice k jusqu’au terme d’indice 1
éventuellement), de sorte que ce (k + 1)-ième élément trouve sa place dans le
début de liste ordonnée. Ainsi, la recherche de la position et l’insertion peuvent
être menées en parallèle.

Algorithme 2 — Le tri par insertion

Entrées : une liste d’éléments à ordonner
Sorties : rien, mais la liste est ordonnée

1 pour i de 0 à |L| - 1 faire
2 pour j de i à 1 faire
3 si L[j] < L[j − 1] alors
4 L[j − 1] ↔ L[j] ;
5 fin

6 fin

7 fin

1. Écrire une fonction insere(L) qui prend en argument une liste L, trie
cette liste et ne retourne rien.

2. Tester le programme sur les listes précédemment définies, et regarder le
temps mis pour trier les listes A1000, A10000, L1000, L10000.

3. Quel est le nombre d’échanges d’éléments dans le meilleur des cas ? Dans
le pire des cas ?

Remarque : Une version plus performante de l’algorithme consiste à rechercher
la place d’insertion avant d’insérer directement le (k + 1)-ième élément à sa
place. Pour cela, on utilise un algorithme optimisé pour déterminer l’indice
d’insertion du (k+1)-ième élément, c’est-à-dire via une recherche dichotomique
entre L[0] et L[k − 1].

Exercice 5 (Tri à bulles). Voici le pseudo-code de l’algorithme :

Algorithme 3 — Le tri à bulles

Entrées : une liste d’éléments à ordonner
Sorties : rien, mais la liste est ordonnée

1 pour i de 0 à |L| - 1 faire
2 pour j de 0 à |L| - 2 -i faire
3 si L[j] > L[j + 1] alors
4 L[j + 1] ↔ L[j] ;
5 fin

6 fin

7 fin

1. Écrire la fonction tribulles prenant en argument une liste d’entiers (ou
de réels. . .) et qui trie la liste dans le corps de la fonction.

2. Quel est le nombre d’échanges d’éléments dans le meilleur des cas ? Dans
le pire des cas ?

3. Quel est, expérimentalement, le type de dépendance entre ce temps mesuré
et la longueur de la liste lorsque celle-ci est triée à l’envers (le pire des cas,
donc) ?

4. Pour une liste L de taille n, on dit que deux indices 0 ⩽ i < j < n
forment une inversion de la liste si L[i] > L[j]. Écrire une fonction
compte_inversions(L) permettant de dénombrer les inversions dans une
liste.

5. On veut vérifier expérimentalement que le nombre d’échanges effectués
dans le tri à bulles correspond exactement au nombre d’inversions de la
liste. Copier le tri à bulles dans une nouvelle fonction echanges_bulles(L)

de sorte que la fonction modifie une copie de la liste et non la liste initiale
et qu’elle renvoie le nombre d’échanges effectués durant le tri.

6. Tester cela sur des listes de différentes tailles.

Le tri rapide (Quicksort) est un algorithme de tri très efficace basé sur un
principe de ”diviser pour mieux régner”.
La fonction quicksort est une fonction récursive qui fonctionne comme suit :

1. Si la liste L est de taille inférieure ou égale à 1, renvoyer la liste L.

2. Choisir un élément pivot dans la liste L (on prend un élément tiré au
hasard, ou le premier élément).

3. Séparer la liste privée en trois sous-listes L1, L2 et L3 comprenant respec-
tivement les éléments inférieurs au pivot, les éléments supérieurs au pivot,
et les éléments égaux au pivot.

4. Creer une liste LT qui est la concaténation de quicksort(L1), de L3 et
de quicksort(L2).

5. Renvoyer LT

Exercice 6 (Tri rapide).

1. Créer une fonction Separation qui prend en entrée une liste L et une
valeur k, et qui renvoie trois listes L1, L2 et L3, contenant tous les éléments
de L inférieurs à k, tous ceux strictement supérieurs à k d’autre part, et
enfin tous ceux égaux à k.

2. Appliquer l’algorithme de tri rapide à la liste L = [8, 3, 9, 6, 5],
en choisissant à chaque fois un élément au hasard comme pivot. On
représentera l’arbre de tous les appels récursifs nécessaires.

3. Ecrire une fonction quicksort qui effectue le tri rapide d’une liste.

4. Tester l’algorithme sur les listes définies précédemment.

Remarque : La complexité en moyenne du tri rapide est O(n ln(n)). Il est ainsi
plus efficace que le tri par sélection et que le tri à bulles.
Cependant, le pire des cas pour le tri rapide se produit lorsque la liste est déjà
triée ou presque triée, entrâınant une complexité de O(n2).

