Nom:

Prénom:

6 ■ Nombres Complexes

Pour le questionnaire qui suit, une seule réponse est exacte par question.

Barème: +1 par bonne réponse, -0.5 par mauvaise réponse, 0 si aucune réponse.

- 1. Un argument de 1-i est

- (a) $\Box \frac{\pi}{4}$ (b) $\Box \frac{3\pi}{4}$ (c) $\Box \frac{5\pi}{4}$ (d) $\Box \frac{7\pi}{4}$
- 2. Soit $z = (1+i)(2+i)\cdots(n+i)$.

Lequel des nombres complexes suivants a la même partie réelle que z?

(a) $\square n! + i^n$

(c) $\Box (1-i)(2-i)\cdots(n-i)$

(b) $\square \operatorname{Im}(z)$

(d) $\square n!$

- 3. Le module de $z = \frac{1+i\sqrt{3}}{1-i}$ est
 - (a) $\Box \frac{1+\sqrt{3}}{2}$ (b) $\Box 2\sqrt{2}$
- (c) \square 2
- (d) $\square \sqrt{2}$

- 4. Un argument de $z = \frac{1 + i\sqrt{3}}{1 i}$ est
- (a) $\Box \frac{5\pi}{12}$ (b) $\Box \frac{\pi}{12}$ (c) $\Box \frac{-5\pi}{6}$ (d) $\Box \frac{7\pi}{12}$
- 5. L'inverse d'un nombre complexe non nul z est égale à son conjugué \overline{z} si et seulement si
 - (a) $\square z = 1$
- (b) $\square z \in \mathbb{R}$
- (c) $\square z \in i\mathbb{R}$
- (d) $\Box |z| = 1$

- 6. Soit $(z, u) \in \mathbb{C}^2$ avec $u^2 = z$. Quand peut-on dire que |u| < |z|?
 - (a) \square lorsque 0 < |z| < 1

PTSI - Test nº 6

(c) □ lorsque z n'est pas nul

(b) □ c'est toujours le cas

- (d) \square lorsque |z| > 1
- 7. Soit $(z, z') \in \mathbb{C}^2$. Si |z| = 1 et |z'| = 2, alors |z' z| est
 - (a) □ compris entre 1 et 3

(c) \square comprisent 1 et $\sqrt{5}$

(b) □ égal à 1

- (d) \square inférieur à -1
- 8. La formule de Moivre affirme que pour tout réel x:
 - (a) $\Box (\cos x + i \sin x)^n = \cos(nx) + i \sin(nx)$ (c) $\Box 2 \cos x = e^{ix} + e^{-ix}$
 - (b) $\Box (\cos x + \sin x)^n = \cos(nx) + \sin(nx)$ (d) $\Box \cos^2 x + \sin^2 x = 1$

- 9. Le cosinus de $\frac{5\pi}{6}$ vaut
 - (a) $\Box -\frac{\sqrt{3}}{2}$ (b) $\Box -\frac{1}{2}$ (c) $\Box -\frac{1}{3}$ (d) $\Box -\frac{\sqrt{2}}{2}$

- 10. Quelle est la valeur de $\cos^2 \frac{\pi}{8}$

- (a) $\Box \frac{2+\sqrt{2}}{4}$ (b) $\Box \frac{2-\sqrt{2}}{4}$ (c) $\Box \frac{\sqrt{2}}{2}$ (d) $\Box \frac{2+\sqrt{3}}{2}$

Nom:

Prénom:

D Nombres Complexes

Pour le questionnaire qui suit, une seule réponse est exacte par question.

Barème: +1 par bonne réponse, -0.5 par mauvaise réponse, 0 si aucune réponse.

- 1. Un argument de 1+i est

- (a) $\Box \frac{\pi}{4}$ (b) $\Box \frac{3\pi}{4}$ (c) $\Box \frac{5\pi}{4}$ (d) $\Box \frac{7\pi}{4}$
- 2. Soit $z = (1+i)(2+i)\cdots(n+i)$.

Lequel des nombres complexes suivants a la même partie réelle que z?

- (a) $\Box (\overline{1} \overline{i})(\overline{2} \overline{i}) \cdots (\overline{n} \overline{i})$
- (c) \square Im (z)

(b) $\square n! + i^n$

(d) \square n!

- 3. Le module de $z = \frac{1 i\sqrt{3}}{1 + i}$ est

 - (a) $\Box \sqrt{2}$ (b) $\Box \frac{1+\sqrt{3}}{2}$ (c) $\Box 2\sqrt{2}$
- (d) \square 2

- 4. Un argument de $z = \frac{1 + i\sqrt{3}}{1 + i}$ est
 - (a) $\Box \frac{\pi}{12}$ (b) $\Box \frac{5\pi}{12}$
- (c) $\Box \frac{-5\pi}{6}$ (d) $\Box \frac{7\pi}{12}$
- 5. L'inverse d'un nombre complexe non nul z est égale à son conjugué \overline{z} si et seulement si
 - (a) $\Box |z| = 1$
- (b) $\Box z = 1$
- (c) $\square z \in \mathbb{R}$
- (d) $\square z \in i\mathbb{R}$

Lvcée Jules Garnier

- 6. Soit $(z, u) \in \mathbb{C}^2$ avec $u^2 = z$. Quand peut-on dire que |u| > |z|?
 - (a) \square lorsque 0 < |z| < 1

PTSI - Test nº 6

(c) □ lorsque z n'est pas nul

(b) □ c'est toujours le cas

- (d) \square lorsque |z| > 1
- 7. Soit $(z, z') \in \mathbb{C}^2$. Si |z| = 3 et |z'| = 2, alors |z' z| est
 - (a) □ compris entre 1 et 3

(c) \square comprisent 1 et $\sqrt{5}$

(b) □ égal à 1

- (d) □ supérieur à 1
- 8. La formule d'Euler affirme que pour tout réel x:
 - (a) $\Box (\cos x + i \sin x)^n = \cos(nx) + i \sin(nx)$ (c) $\Box \cos^2 x + \sin^2 x = 1$
- - (b) $\Box (\cos x + \sin x)^n = \cos(nx) + \sin(nx)$ (d) $\Box 2 \cos x = e^{ix} + e^{-ix}$

- 9. Le cosinus de $-\frac{5\pi}{\epsilon}$ vaut

- (a) $\Box -\frac{1}{2}$ (b) $\Box -\frac{1}{3}$ (c) $\Box -\frac{\sqrt{2}}{2}$ (d) $\Box -\frac{\sqrt{3}}{2}$
- 10. Quelle est la valeur de $\sin^2 \frac{\pi}{8}$

- (a) $\Box \frac{\sqrt{2}}{2}$ (b) $\Box \frac{2+\sqrt{3}}{2}$ (c) $\Box \frac{2+\sqrt{2}}{4}$ (d) $\Box \frac{2-\sqrt{2}}{4}$