Trigonométrie & Calcul intégral

Exercice l: Soit n un entier naturel supérieur ou égal à 2.

On note:

$$A = \sum_{0 \leqslant 3p \leqslant n} \binom{n}{3p} \qquad B = \sum_{0 \leqslant 3p+1 \leqslant n} \binom{n}{3p+1} \qquad C = \sum_{0 \leqslant 3p+2 \leqslant n} \binom{n}{3p+2}$$

On rappelle que $j=e^{\frac{2\mathrm{i}\pi}{3}}$ est une des racines du polynôme $x\longmapsto 1+z+z^2.$

- 1 Simplifier l'écriture de $(1+j)^n$. En déduire l'expression simplifiée de $(1+j^2)^n$.
- 2 Pour $z \in \mathbb{C}$, développer l'expression $(1+z)^n$.
- 3 En remplaçant successivement z par 1, j et j^2 , en déduire un système vérifié par A, B et C.
- 4 En déduire les expressions de A, B et C.

Exercice 2:

- Calculer $\int_0^{2\pi} \sin(pt) \sin(qt) dt$ pour $(p; q) \in \mathbb{Z}^2$.
- 2 Reproduire et compléter le tableau suivant :

$I_1 = \int_0^{\frac{\pi}{4}} \tan^2 t \mathrm{d}t = \dots$	$I_2 = \int_0^{\frac{\pi}{2}} \frac{\sin t}{\cos^2 t + 1} dt = \dots$
$I_3 = \int_0^{\frac{\pi}{2}} \cos t \sqrt{1 + \sin t} \mathrm{d}t = \dots$	$I_4 = \int_1^e \frac{\cos(\ln t)}{t} \mathrm{d}t = \dots$
$I_5 = \int_0^{\frac{\pi}{4}} \frac{\tan t}{\cos^2 t} \mathrm{d}t = \dots$	$I_6 = \int_0^\pi \sin^4 t \cos^2 t \mathrm{d}t = \dots$
$I_7 = \int_{-1}^1 \sqrt{1 - t^2} \mathrm{d}t = \dots$	$I_8 = \int_{-1}^1 t \sqrt{1 - t^2} dt = \dots$
$I_9 = \int_2^1 t^2 (1 - \sqrt[3]{t}) dt = \dots$	$F_{10}(x) = \int \frac{dx}{\sqrt{x+1} + \sqrt{x-1}} = \dots$
$F_{11}(x) = \int \frac{x + \sqrt{x} + 1}{(x+1)\sqrt{x}} dx = \dots$	$I_{12} = \int_0^1 t^2 e^t dt = \dots$
$I_{13} = \int_1^e t^2 \ln t \mathrm{d}t = \dots$	$F_{14}(x) = \int \arcsin^2 x \mathrm{d}x = \dots$
$F_{15}(x) = \int x \arctan^2 x \mathrm{d}x = \dots$	$I_{16} = \int_0^1 t e^t \sin t \mathrm{d}t = \dots$