Une jolie courbe et des tangentes

Exercice 1: Soit \mathscr{C} le cercle d'équation cartésienne $x^2 + y^2 - 6x + 2y + 5 = 0$ et A (4; -4). On peut mener par le point A deux tangents au cercle \mathscr{C} .

Calculer la distance entre les points d'intersection de ces tangentes et de \mathscr{C} .

Exercice 2: Soit \mathcal{E} le plan muni du repère orthonormal $(O; \overrightarrow{\imath}; \overrightarrow{\jmath})$.

Soit (\mathcal{D}) la droite d'équation : y = -1 et F le point de coordonnées (0; 1).

A tout point M(x; y) du plan on associe le point H, projeté orthogonal de M sur (\mathcal{D}) .

On considère \mathcal{P} l'ensemble des points M tels que

$$MF = MH$$

- 1 ① Déterminer les coordonnées de H en fonction de x.
 - \bigcirc Calculer en fonction de x et y les distances MF et MH.
 - \bigcirc En déduire que M appartient à \mathcal{P} si, et seulement si,

$$y = \frac{x^2}{4}$$

Comment s'appelle l'ensemble \mathcal{P} ?

2 On considère les points M et M' de \mathcal{P} d'abscisses respectives 4 et -1 et H et H' leur projeté orthogonal respectif sur (\mathcal{D}) .

Soit (Δ) la bissectrice de l'angle \widehat{FMH} et (Δ') la bissectrice de l'angle $\widehat{FM'H'}$.

- 1 Placer les points F, M, M', H et H'
- 2 Préciser les coordonnées des points M, M', H et H'.
- (3) Exprimer les coordonnées des vecteurs \overrightarrow{FM} et $\overrightarrow{FM'}$ et montrer qu'ils sont colinéaires. Que peut-on en déduire?
- 4 Déterminer les équations réduites droites (Δ) et (Δ') . Tracer ces droites. Montrer qu'elles sont perpendiculaires.
- \bigcirc Déterminer les coordonnées de leur point commun et montrer qu'il appartient à (\mathscr{D}) .
- 6 (Δ) coupe l'axe (O; $\overrightarrow{\jmath}$) en T.
 - i. Donner une équation de la perpendiculaire à (Δ) en M.
 - ii. Cette droite coupe l'axe $(O; \overrightarrow{j})$ en N. Donner les coordonnées de N et T.
 - iii. Montrer F est le milieu de [NT].
- 3 On appelle Q le projeté de M sur l'axe (O; \overrightarrow{j}) et I le milieu de [FH]. Donner le nom et les éléments caractéristiques de la transformation qui associe le triangle MNQ au triangle IFO.