Espaces vectoriels en dimension finie

Les trois parties sont indépendantes.

Partie A : Soit $E = \mathbb{R}^{\mathbb{R}}$. On pose $F = \{ f \in E, f(1) = f(0) = 0 \}$ et G l'ensemble des fonctions affines sur \mathbb{R} .

Montrer que F et G sont supplémentaires dans E.

Partie B : Pour
$$k \in [0,3]$$
, on définit $f_k : \mathbb{R} \longmapsto \mathbb{R}$. $x \mapsto e^{kx}$.

On pose $E = \text{vect } (\{f_0, f_1, f_2, f_3\}).$

- 1. Démontrer que pour tout $f \in E$, $f'' 3f' + 2f \in E$.
- 2. On note $\Psi: \ \to E$. Montrer que $\Psi \in \mathcal{L}(E).$ f f''-3f'+2f
- 3. Démontrer que la famille (f_0, f_1, f_2, f_3) est libre.
- 4. Déterminer $U = \ker \Psi$. Que peut-on en déduire pour Ψ ?
- 5. Déterminer $W = \ker(\Psi 2Id_E)$.
- 6. Vérifier que U et W sont supplémentaires dans E.

Partie C: On pose $E = \mathbb{R}^4$. On considère les sous-espaces vectoriels suivants :

- F =
$$\{(x, y, z, t) \in \mathbb{R}^4, x = y = z\}$$

- G =
$$\{(x, y, z, t) \in \mathbb{R}^4, x + y = 0, z - t = 0, x - y + 3z + 5t = 0\}$$

Déterminer \mathcal{B} et \mathcal{B}' des bases respectives de F et G. Compléter \mathcal{B} en une base de E.

Partie D: Dans $\mathcal{M}_n(\mathbb{K})$, on considère les matrices élémentaires $E_{i,j}$ et $E_{k,\ell}$.

Déterminer le produit $E_{i,j}E_{k,\ell}$.