Espaces vectoriels

Exercice 1 (Polynômes de Legendre):

- Toute combinaison linéaire de polynômes de degré au plus n est un polynôme donc E_n , non vide, est un sous-espace vectoriel de $\mathbb{R}[X]$.
 - ② Deux choses à montrer :
 - i. Soit $P \in E_n$, alors $\deg f_n(P) \leq \max (2 + \deg P 2; 1 + \deg P 1; \deg P) \leq n$. Donc $f_n(P) \in E_n$ qui est stable par f_n .
 - ii. Soient $\lambda \in \mathbb{R}$ et P, Q deux polynômes de degré au plus n. Par linéarité de la dérivation, on a :

$$f_n(\lambda P + Q) = (X^2 - 1)(\lambda P + Q)'' + 2X(\lambda P + Q)' - k(k+1)(\lambda P + Q)$$

= $\lambda ((X^2 - 1)P'' + 2XP' - k(k+1)P) + (X^2 - 1)Q'' + 2XQ' - k(k+1)Q$
= $\lambda f_n(P) + f_n(Q)$.

PTSI - Correction

L'application f_n est donc linéaire.

En conclusion, $f_n \in \mathcal{L}(\mathbf{E}_n)$.

- Pour tout $k \in \mathbb{N}$, on pose $P_k = (X^2 1)^k$ et $L_k = P_k^{(k)}$.
 - \bigcirc Comme deg $P_k = 2k$ alors deg $L_k = 2k k = k$.
 - ② Appliquons la formule de Leibniz au produit $(X-1)^n \times (X+1)^n$:

$$L_n = P_n^{(n)} = \sum_{j=0}^n \binom{n}{j} \left((X-1)^n \right)^{(j)} \left((X+1)^n \right)^{(n-j)}$$

Comme $((X-1)^n)^{(j)}(1) \neq 0 \iff j = n$, on a :

$$L_n(1) = ((X+1)^n)^{(0)} = 2^n n!.$$

De même, $((X+1)^n)^{(n-j)}(-1) \neq 0 \iff j=0$, d'où

$$L_n(-1) = ((X-1)^n)^{(0)} = (-2)^n n!.$$

③ Il suffit de calculer avec $P'_n = 2nX(X^2 - 1)^{n-1}$. Donc,

$$(\mathbf{X}^2 - 1)\mathbf{P}_n' = 2n\mathbf{X}\mathbf{P}_n \tag{XX.1}$$

À l'aide de la formule de Leibniz, dérivons la relation (XX.1), n+1 fois : Comme $(X^2-1)^{(i)}=0$ pour tout i>2, on a :

$$\begin{split} \left((\mathbf{X}^2 - 1) \mathbf{P}_n' \right)^{(n+1)} &= \sum_{i=0}^{n+1} \binom{n+1}{i} (\mathbf{X}^2 - 1)^{(i)} \mathbf{P}_n^{(n+1-i+1)} \\ &= \binom{n+1}{0} (\mathbf{X}^2 - 1) \mathbf{P}_n^{(n+2)} + \binom{n+1}{1} (2\mathbf{X}) \mathbf{P}_n^{(n+1)} + \binom{n+1}{2} (2) \mathbf{P}_n^{(n)} \\ &= (\mathbf{X}^2 - 1) \mathbf{P}_n^{(n+2)} + 2(n+1) \mathbf{X} \mathbf{P}_n^{(n+1)} + n(n+1) \mathbf{P}_n^{(n)}. \end{split}$$

De la même manière pour le second membre :

$$(2nXP_n)^{(n+1)} = \sum_{i=0}^{n+1} {n+1 \choose i} (2X)^{(i)} P_n^{(n+1-i)}$$

$$= (2nX)P_n^{(n+1)} + 2n(n+1)P_n^{(n)}.$$

Il ne reste plus qu'à égaliser les deux relations précédentes :

$$(X^{2}-1)P_{n}^{(n+2)} + 2(n+1)XP_{n}^{(n+1)} + n(n+1)P_{n}^{(n)} = (2nX)P_{n}^{(n+1)} + 2n(n+1)P_{n}^{(n)}$$

$$(X^{2}-1)P_{n}^{(n+2)} + XP_{n}^{(n+1)} = n(n+1)P_{n}^{(n)}.$$

Enfin,
$$0 = (X^2 - 1)P_n^{(n+2)} + XP_n^{(n+1)} - n(n+1)P_n^{(n)} = f_n(L_n)$$
 et $L_n \in \ker f_n$.

Un peu d'histoire: En mathématiques et en physique théorique, les polynômes de Legendre constituent l'exemple le plus simple d'une suite de polynômes orthogonaux.

Ce sont des solutions polynomiales $P_n(x)$, sur l'intervalle $x \in [-1\,;1]$, de l'équation différentielle de Legendre :

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(1-x^2\right)\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{P}_n(x)\right] + n(n+1)\,\mathrm{P}_n(x) = 0,$$

dans le cas particulier où le paramètre n est un entier naturel.

Exercice 2: On raisonne par double implication:

- Supposons que Im $(f) \cap \ker(g) = \text{Im } (f) \cap \ker(h)$ et soit $x \in \ker(g \circ f)$ Alors, $f(x) \in \text{Im } (f) \cap \ker(g) = \text{Im } (f) \cap \ker(h)$ Donc $(h \circ f)(x) = h(f(x)) = 0$ et $x \in \ker(h \circ f)$ i.e. $\ker(g \circ f) \subset \ker(h \circ f)$ Par symétrie, on a l'égalité.
- Réciproquement, supposons $\ker(g \circ f) = \ker(h \circ f)$ et soit $y \in \operatorname{Im}(f) \cap \ker(g)$. Alors, il existe $x \in \operatorname{E}$ tel que y = f(x) et $0 = g(y) = g(f(x)) \implies x \in \ker(g \circ f) = \ker(h \circ f)$. D'où h(y) = h(f(x)) = 0 et $y \in \operatorname{Im}(f) \cap \ker(h)$ i.e. $\operatorname{Im}(f) \cap \ker(g) \subset \operatorname{Im}(f) \cap \ker(h)$. Par symétrie, on a l'égalité.

En conclusion, $\ker(q \circ f) = \ker(h \circ f) \iff \operatorname{Im}(f) \cap \ker(q) = \operatorname{Im}(f) \cap \ker(h)$.

2

1

3

Exercise 3 : Soit $F = \{(x, y, z) \in \mathbb{R}^3, x - z = 0\}$ et $G = \mathbb{R}(1, 1, 0)$.

 $-(0,0,0) \in F \text{ donc } F \neq \emptyset.$

$$- \text{ Soient } (x,y,z), (x',y',z') \in \mathcal{F} \text{ et } \lambda \in \mathbb{R}. \\ \lambda(x,y,z) + (x',y',z') = (\underbrace{\lambda x + x'}_{\mathcal{X}}, \lambda y + y', \underbrace{\lambda z + z'}_{\mathcal{Z}}).$$

$$\operatorname{Or} \mathbf{X} - \mathbf{Z} = (\lambda x + x') - (\lambda z + z') = \lambda \underbrace{(x - z)}_{=0} + \underbrace{(x' - z')}_{=0} = 0 \operatorname{car} \begin{cases} x - z = 0 \text{ puisque } (x, y, z) \in \mathbf{F} \\ x' - z' = 0 \text{ puisque } (x', y', z') \in \mathbf{F} \end{cases}.$$

On en déduit que $\lambda(x, y, z) + (x', y', z') \in F$.

On a prouvé que F est un sous-espace vectoriel de \mathbb{R}^3 .

2 — Montrons que F et G sont en somme directe.

Soit $(x, y, z) \in F \cap G$.

Comme $(x,y,z)\in G$, il existe $\lambda\in\mathbb{R}$ tel que $(x,y,z)=\lambda(1,1,0).$ On a alors $x=\lambda,$ $y=\lambda$ et z=0.

D'autre part, $(x, y, z) \in F$ donc x - z = 0. On en déduit que x = z = 0. Donc $\lambda = 0$ et finalement (x, y, z) = (0, 0, 0).

On a prouvé que $F \cap G \subset \{(0,0,0)\}.$

L'autre inclusion étant immédiate, on conclut que $F \cap G = \{(0,0,0)\}$

— Montrons que $F \oplus G = \mathbb{R}^3$.

— F et G étant des sev de \mathbb{R}^3 , on a bien-sûr $F \oplus G \subset \mathbb{R}^3$.

— Montrons que $\mathbb{R}^3 \subset \mathcal{F} \oplus \mathcal{G}$.

Soit $(x, y, z) \in \mathbb{R}^3$. Écrivons

$$(x, y, z) = (z, y - x + z, z) + (x - z, x - z, 0).$$

On a clairement $(z,y-x+z,z)\in \mathcal{F}$ et $(x-z,x-z,0)\in \mathcal{G}$, donc $(x,y,z)\in \mathcal{F}\oplus \mathcal{G}$. On a montré que $\mathbb{R}^3\subset \mathcal{F}\oplus \mathcal{G}$

Bilan : $\mathbb{F} \oplus \mathbb{G} = \mathbb{R}^3$

3
$$u = (1,2,3) = \underbrace{(3,4,3)}_{\in F} + \underbrace{(-2,-2,0)}_{\in G}$$

Comme p est le projecteur sur F parallèlement à G, on a donc p(u) = (3,4,3)

Lycée Jules Garnier