Applications

Soient $A \subset E \cap E'$, $E \subset G$ et $B \subset F$ des ensembles et $f : E \longmapsto F$ une application.

- On dit que $g: E' \longrightarrow F$ et f coïncident sur A si, et seulement si $f_{|A} \equiv g_{|A}$.
- Une application g est un prolongement de f à G si, et seulement si g est définie sur G et coı̈ncide avec f sur E.
- Quelle condition nécessaire doit-on imposer pour considérer la corestriction de f à B? $f(E) \subset B$.

Soient f une fonction à valeurs réelles définie sur un intervalle I de $\mathbb R$ et $x_0 \in \mathcal I$.

4 La fonction f est dite $major\acute{e}e$ sur I si :

$$\exists M \in \mathbb{R}, \forall x \in I, f(x) \leq M.$$

Le réel M est alors appelé un $\,$ majorant de f (sur I).

5 La fonction f admet un $maximum \ global \ en \ x_0 \ si$:

$$\forall x \in I, f(x) \leqslant f(x_0).$$

On note alors $f(x_0) = \max_{x \in \mathcal{I}} f(x)$.

Dans ce cas, on appelle $\$ cette limite nombre dérivé de f en x_0 noté $f'(x_0)$:

$$f'(x_0) = \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(x_0 + h) - f(x_0)}{h}.$$

- On dit que f est continue en x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$.
- 8 Énoncer le théorème des valeurs intermédiaires (ni celui appliqué aux fonctions strictement monotones, ni celui de la bijection)

Soient I un intervalle de \mathbb{R} et $f\in\mathscr{C}^{0}\left(\mathrm{I}\,;\mathbb{R}\right)$.

flors, $f(\mathrm{I})$ est un intervalle : tout réel entre deux valeurs de f admet au moins un antécédent par f.

$$\forall \, f(a), f(b) \in f(\mathcal{I}), \, f(a) < k < f(b) \implies \exists \, c \in [a\,;b] \, \, / \, f(c) = k.$$

- 9 Soit $f: I \longrightarrow J$ une bijection où I et J sont deux intervalles de \mathbb{R} .
 - **Variations :** Si f est strictement monotone sur I alors f^{-1} l'est aussi et de même monotonie .
 - **b** Continuité : Si f est continue sur I alors f^{-1} est continue sur J.

$$\forall b \in J, (f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))} = \frac{1}{f'(a)}$$
 où $b = f(a)$.

Soit
$$f$$
 définie par $f(x) = \frac{x}{e^x}$.

10 Déterminer le domaine de définition \mathcal{D}_f de f.

L'exponentielle ne s'annule pas sur $\mathbb R$ donc $\mathcal D_f=\mathbb R.$

III Justifier que f est dérivable sur \mathcal{D}_f et donner l'expression de f'.

La fonction f est le quotient de deux fonctions dérivables dont le dénominateur ne s'annule pas sur \mathcal{D}_f . Elle y est donc dérivable et on a :

$$\forall\,x\in\mathcal{D}_{f^{\flat}}\,\,f'(x)=\frac{1-x}{\mathrm{e}^{x}}\,\,\mathrm{du\,\,signe}\,\,\mathrm{de}\,\,1-x.$$

En déduire le tableau de variation de f en y faisant figurer les limites aux bornes du domaine de définition sans justification.

x	$-\infty$		1		$+\infty$
f'(x)		+	0	_	
f	$-\infty$		$\frac{1}{e}$		0

- 13 En déduire que f établit une bijection de

Soit
$$f$$
 définie par $f(x) = \frac{x^3 - x}{x^2 - 4}$.

14 Donner le domaine de définition \mathcal{D}_f de f.

$$\mathcal{D}_f = \left] - \infty \, ; -2[\, \cup \,] -2 \, ; 2[\, \cup \,]2 \, ; + \infty [.$$

Effectuer la division euclidienne de $x^3 - x$ par $x^2 - 4$:

$$3x^3 - x = x(x^2 - 4) + 3x.$$

- Montrer qu'il existe trois réels a,b et c tels que $\forall\,x\in\mathcal{D}_f,\,f(x)=ax+b+\frac{cx}{x^2-4}.$ D'après la question précédente, si $x\neq\pm2$, on a : $f(x)=x+\frac{3x}{x^2-4}.$
- Sans aucune justification, esquisser, sur le graphique ci-dessous, l'allure de la courbe représentative de f.

