Hyperboles à la puissance

A. Une fonction auxiliaire.

1. Par croissances comparées, on a $u^2 \ln u \xrightarrow[u \to 0^+]{} 0$, donc par somme $\varphi(u) \xrightarrow[u \to 0^+]{} -1$.

Par produit, on a $u^2 \ln u \xrightarrow[u \to +\infty]{} +\infty$, donc par somme $\varphi(u) \xrightarrow[u \to +\infty]{} +\infty$.

2. La fonction $u \mapsto u^2 \ln u$ est dérivable sur \mathbb{R}_+^* (produit d'un polynôme par la fonction ln), donc par somme avec le polynôme $u \mapsto u^2-1$, on en déduit que φ est dérivable sur \mathbb{R}_+^* . Sa dérivée est :

3. Soit u > 0; le signe de $\varphi'(u)$ est celui de $2\ln(u) + 3$. Ainsi,

 $\varphi'(u) > 0 \iff 2\ln(u) + 3 > 0 \iff u > e^{-3/2}$ et de même $\varphi'(u) < 0 \iff u < e^{-3/2}$.

De plus, $\varphi'(u) = 0 \iff u = e^{-3/2}$. On obtient le tableau suivant :

u	0	$e^{-3/2}$	$+\infty$
$\varphi'(u)$		- 0 +	
φ	-	-1 $\varphi(e^{-3/2})$	$+\infty$

4. Comme φ est décroissante sur]0; $e^{-3/2}$] avec $\lim_{0^+} \varphi = -1 < 0$, on en déduit que $\varphi < 0$ sur]0; $e^{-3/2}$].

Ensuite, on vérifie facilement que $\varphi(1) = 0$. Donc, φ étant **strictement croissante** sur $]e^{-3/2};1[$ avec $\varphi(1) = 0$, on en déduit que $\varphi < 0$ sur $]e^{-3/2};1[$.

Finalement, on obtient $\varphi < 0$ sur $]0; e^{-3/2}] \cup]e^{-3/2}; 1[=]0; 1[.$

De même, φ est **strictement croissante** sur $]1; +\infty[$ avec $\varphi(1) = 0$, donc $\varphi(1) = 0$ sur $]1; +\infty[$.

Commentaires: Pour le raisonnement sur $]0; e^{-3/2}]$, on n'avait pas besoin d'invoquer la stricte décroissance, car la limite en 0^+ était déjà < 0. Mais, sur $]e^{-3/2}; +\infty[$ la stricte monotonie est cruciale car $\varphi(1) = 0$ (donc φ ne doit s'annuler nulle part ailleurs!).

- **B.** Étude des variations de f.
 - 1. En réécrivant f sous forme exponentielle, on a $f \colon x \longmapsto \operatorname{ch}(x)^{\operatorname{sh}(x)} = \operatorname{e}^{\operatorname{sh}(x)\operatorname{ln}(\operatorname{ch} x)}$. Pour tout $x \in \mathbb{R}$, ch est à valeurs strictement positives donc $\mathcal{D}_f = \mathbb{R}$.
 - 2. La fonction che st dérivable sur \mathbb{R} et à valeurs strictement positives, donc par composition avec la fonction ln (qui est dérivable sur \mathbb{R}_+^*), on en déduit que la fonction $x \mapsto \ln(\operatorname{ch} x)$ est dérivable sur \mathbb{R} .

Ensuite, par produit avec sh (qui est dérivable sur \mathbb{R}), la fonction $x \mapsto \operatorname{sh}(x) \ln(\operatorname{ch} x)$ est dérivable sur \mathbb{R} .

Finalement, par composition avec exp (qui est dérivable sur \mathbb{R}), on a bien f qui est dérivable sur \mathbb{R} . Calculons sa dérivée; on peut remarquer que $f = e^u$ avec $u \colon x \longmapsto \operatorname{sh}(x) \operatorname{ln}(\operatorname{ch} x)$. Commençons par calculer u':

 $\begin{array}{ll} \forall \ x \in \mathbb{R}, & u'(x) = \operatorname{ch}(x) \ln(\operatorname{ch} x) + \operatorname{sh}(x) \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} & (\operatorname{d\acute{e}riv\acute{e}e} \ \operatorname{d'un} \ \operatorname{produit} \ \operatorname{et} \ \operatorname{de} \ln(v)) \\ & = \frac{\operatorname{ch}^2(x) \ln(\operatorname{ch} x) + \operatorname{sh}^2(x)}{\operatorname{ch}(x)} & (\operatorname{mise} \ \operatorname{au} \ \operatorname{m\^{e}me} \ \operatorname{d\acute{e}nominateur}) \\ & = \frac{\operatorname{ch}^2(x) \ln(\operatorname{ch} x) + \operatorname{ch}^2(x) - 1}{\operatorname{ch}(x)} & (\operatorname{relation} \ \operatorname{fondamentale} \ \operatorname{ch}^2 - \operatorname{sh}^2 = 1) \\ & = \frac{\varphi(\operatorname{ch}(x))}{\operatorname{ch}(x)}, \end{array}$

où φ a été définie en partie **A**. Terminons par f':

3. (a) Soit $x \in \mathbb{R}$. Comme $f(x) \neq 0$ (c'est une exponentielle), on a :

$$\boxed{f'(x) = 0} \iff \varphi(\operatorname{ch}(x)) = 0 \iff_{\operatorname{voir} \mathbf{A}^4} \operatorname{ch}(x) = 1 \ \iff x = 0.$$

(b) Soit $x \in \mathbb{R}$. Comme f(x) > 0 et $\operatorname{ch}(x) > 0$, alors f'(x) est du signe de $\varphi(\operatorname{ch} x)$:

$$\begin{split} f'(x) > 0 &\iff \varphi(\operatorname{ch} x) > 0 \\ &\iff \operatorname{ch} x > 1 \\ &\iff x \neq 0 \end{split} \qquad \text{(d'après la question \mathbf{A}4 sur le signe de φ)}$$

Ainsi,
$$\forall x \in \mathbb{R}^*, \quad f'(x) > 0.$$

4. Limite $en - \infty$. Comme $\operatorname{ch} x \xrightarrow[x \to -\infty]{} + \infty$, alors par composition avec ln on a $\operatorname{ln}(\operatorname{ch} x) \xrightarrow[x \to -\infty]{} + \infty$. Puis, comme $\operatorname{sh} x \xrightarrow[x \to -\infty]{} - \infty$, alors par produit on a $\operatorname{sh}(x) \operatorname{ln}(\operatorname{ch} x) \xrightarrow[x \to -\infty]{} - \infty$.

Enfin, par composition avec exp, on obtient $f(x) \xrightarrow[x \to -\infty]{} 0$.

Limite en $+\infty$. Comme précédemment, on obtient $\operatorname{sh}(x)\operatorname{ln}(\operatorname{ch} x)\xrightarrow[x\to+\infty]{}+\infty$, donc par composition avec \exp , $f(x)\xrightarrow[x\to+\infty]{}+\infty$.

5. Grâce aux questions précédentes, nous avons :

x	$-\infty$		0		$+\infty$
f'(x)		+	0	+	
f	0 -		1-		$\rightarrow +\infty$

- C. Étude des éventuelles branches infinies.
 - 1. Puisque $\lim_{x\to-\infty} f=0$, la courbe \mathcal{C}_f admet une asymptote horizontale d'équation y=0 (axe des abscisses).
 - 2. (a) Soit x > 0:

(b) Soit x > 0; grâce à ce qui précède, on a :

$$\frac{\ln(x)}{\operatorname{sh}\left(x\right)\ln(\operatorname{ch}\left(x\right))} = \frac{\ln(x)}{\operatorname{sh}\left(x\right)x\left(1+\frac{1}{x}\ln\left(\frac{1+\operatorname{e}^{-2x}}{2}\right)\right)} = \frac{\ln x}{x} \times \frac{1}{\operatorname{sh}\left(x\right)} \times \frac{1}{1+\frac{1}{x}\ln\left(\frac{1+\operatorname{e}^{-2x}}{2}\right)}.$$

Examinons les limites de chacun de ces trois facteurs.

- Par croissances comparées, on a $\frac{\ln x}{x} \xrightarrow[x \to +\infty]{} 0$.
- Par inverse, on a $\frac{1}{\sinh(x)} \xrightarrow[x \to +\infty]{} 0$.
- Comme $\frac{1+e^{-2x}}{2} \xrightarrow[x \to +\infty]{} \frac{1}{2}$, alors par composition avec \ln puis par produit avec $\frac{1}{x}$ (qui tend vers 0 en $+\infty$), on a $\frac{1}{x} \ln \left(\frac{1+e^{-2x}}{2} \right) \xrightarrow[x \to +\infty]{} 0$.

D'où, par somme avec 1 puis par inverse, $\frac{1}{1 + \frac{1}{x} \ln\left(\frac{1 + e^{-2x}}{2}\right)} \xrightarrow[x \to +\infty]{} 1.$

Conclusion : par produit de limites finies, on a $\frac{\ln(x)}{\sinh(x)\ln(\cosh(x))} \xrightarrow[x \to +\infty]{} 0.$

(c) Soit x > 0; en mettant tout sous forme exponentielle, on a :

$$\begin{split} \frac{f(x)}{x} &= \frac{\mathrm{e}^{\mathrm{sh}\,(x)\ln(\mathrm{ch}\,x)}}{\mathrm{e}^{\ln x}} \\ &= \mathrm{e}^{\mathrm{sh}\,(x)\ln(\mathrm{ch}\,x)-\ln x} \\ &= \mathrm{e}^{\mathrm{sh}\,(x)\ln(\mathrm{ch}\,x)\left(1-\frac{\ln x}{\mathrm{sh}\,(x)\ln(\mathrm{ch}\,x)}\right)} \quad \text{(factorisation par le terme prépondérant)}. \end{split}$$

D'après la question précédente, la parenthèse ci-dessus tend vers 1 lorsque $x \to +\infty$. Or, on a déjà vu que sh(x) ln $(ch x) \xrightarrow[x \to +\infty]{} +\infty$, donc par produit puis par composition avec exp, on obtient finalement :

$$\boxed{\frac{f(x)}{x}\xrightarrow[x\to+\infty]{}+\infty}.$$

La courbe \mathscr{C}_f admet donc une branche parabolique de direction $(\mathcal{O}y)$.

3.

