

Fonctions circulaires

Contenu

I. Le cercle ti	rigonométrique	
I.1	Enroulement de l'axe réel sur le cercle trigonométrique	2
I.2	Autour du cercle trigonométrique	3
I.3	Équations trigonométriques	6
II. Trigonomé	trie	
II.1	Formules de duplication	7
II.2	Formules de linéarisation	7
III. Fonctions	circulaires	
III.1	Domaine de définition, parité et périodicité	8
III.2	Continuité, dérivabilité	10
III.3	Variations et représentation graphique	11
IV. Fonctions	circulaires réciproques	
IV.1	Arccosinus et Arcsinus	12
IV.2	Dérivabilité	13
IV.3	Courbes représentatives	14
V. Fonctions t	tangente et réciproque	
V.1	Fonction tangente	15
V.2	Fonction arctangente	19
VI. Tableau ré	capitulatif	

LE CERCLE TRIGONOMÉTRIQUE

I.1

Enroulement de l'axe réel sur le cercle trigonométrique

Le plan est rapporté à un repère orthonormé direct $(O; \vec{i}; \vec{j})$. Le cercle trigonométrique est le cercle de centre O et de rayon 1, orienté dans le sens direct.

En « enroulant » l'axe des réels autour du cercle trigonométrique, on constate qu'à tout réel x est associé un et un seul point M du cercle trigonométrique.

Réciproquement, tout point du cercle trigonométrique est associé à une infinité de réels. Plus précisément, si le point M du cercle trigonométrique est associé à un certain réel x_0 , alors les réels associés au point M sont les réels de la forme $x_1=x_0+2k\pi$ où k est un entier relatif.

On dit alors que « x_0 et x_1 sont $\acute{e}gaux$ modulo 2π » et on note :

$$x_0 \equiv x_1 \ [2\pi]$$
.

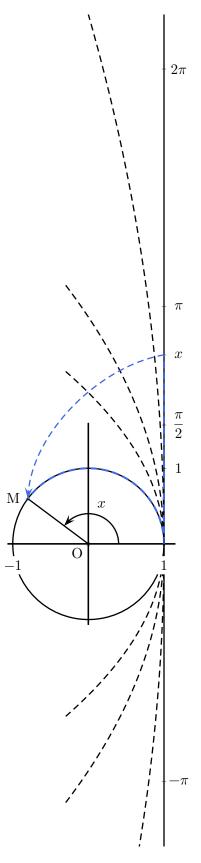
La relation d'égalité modulo 2π est une relation d'équivalence sur \mathbb{R} .

Si M est un point du cercle trigonométrique, tout réel x associé à M par ce procédé est, par définition, une mesure en radian de l'angle orienté $(\vec{\imath}; \overrightarrow{\mathrm{OM}})$.

L'ensemble des mesures en radian de l'angle orienté $(\vec{\imath}; \overrightarrow{OM})$ est donc l'ensemble des réels de la forme $x_0 + 2k\pi, k \in \mathbb{Z}$, l'ensemble des réels égaux à x_0 modulo 2π .

On parlera plutôt de classe d'équivalence de $(\vec{\imath}; OM)$ dont x_0 est un représentant.

Lorsque $x_0 \in]-\pi;\pi],$ on parlera alors de mesure principale de l'angle.



Exemples 1:

- 1 radian correspond à l'angle donné par le point du cercle formant un arc de longueur 1.
- Par définition, 2π radian correspond donc à l'angle donné par le point du cercle formant un arc de longueur 2π : le périmètre du cercle!
- La mesure d'un angle orienté en radians est proportionnelle à sa mesure en degrés :

degrés	0	30	45	60	90	180	$x = \frac{180}{\pi} \times y$
radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$y = \frac{\pi}{180} \times x$

■ $1 \operatorname{rad} \simeq 57, 3^{\circ} \text{ et } 1^{\circ} \simeq 0, 0175 \operatorname{rad}.$

Exercice I: Donner la mesure qui appartient à l'intervalle $[0; 2\pi[$ puis la mesure principale de l'angle dont une mesure vaut :

$$-\frac{9\pi}{10}$$

$$\frac{148\pi}{3}$$

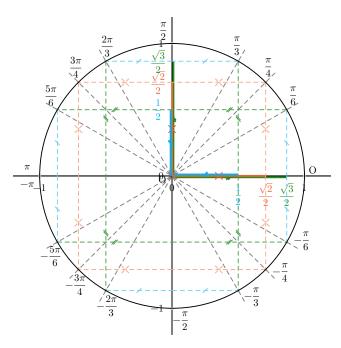


Figure VII.1 – Angles remarquables.

I.2 Autour du cercle trigonométrique

On munit le plan d'un repère orthonormé $(O; \vec{i}; \vec{j})$ et on note \mathscr{C} le cercle trigonométrique, c'est à dire le cercle de centre O et de rayon 1.

Définition I: Pour tout nombre réel x, il existe un unique point M du cercle trigonométrique tel que l'angle orienté $(\vec{\imath}; \overrightarrow{\mathrm{OM}})$ ait pour mesure x radians.

- On appelle cosinus de x, noté $\cos(x)$, l'abscisse de M.
- On appelle sinus de x, noté $\sin(x)$, l'ordonnée de M.

L'abscisse de M est notée $\cos(x)$ et son ordonnée $\sin(x)$, on les appelle le cosinus et le sinus du nombre réel x.

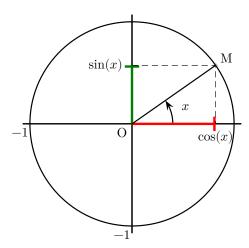
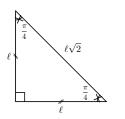
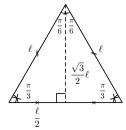


Figure VII.2 – Pour tout nombre réel x, il existe un unique point M du cercle trigonométrique tel que l'angle orienté $(\vec{i}; \overrightarrow{OM})$ ait pour mesure x radians.





Triangle rectangle isocèle

Triangle équilatéral

Figure VII.3 - Relations entre angles et longueurs dans des triangles particuliers.

Radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Remarque : La ligne des sinus s'écrit $\frac{\sqrt{0}}{2}$, $\frac{\sqrt{1}}{2}$, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{2}$, $\frac{\sqrt{4}}{2}$.

Figure VII.4 – Cosinus et sinus d'angles remarquables.

Exercice 2: Calculer:

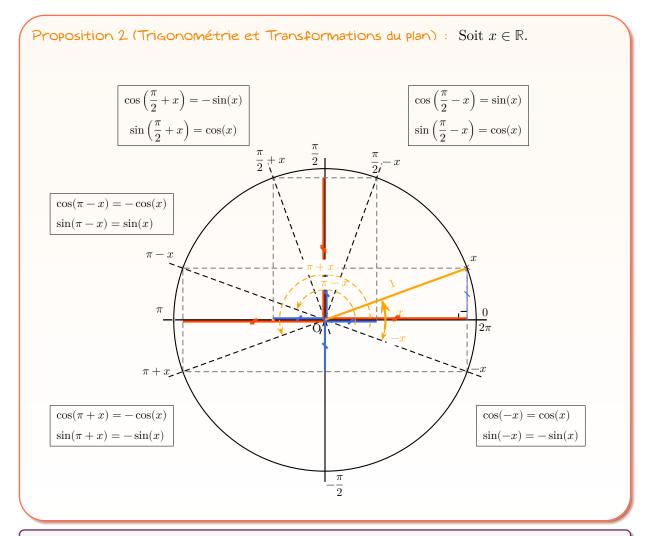
 $\sin\left(-\frac{3\pi}{4}\right)$

Théorème I: Soit x un réel.

- $\cos^2(x) + \sin^2(x) = 1.$
- $-1\leqslant \cos(x)\leqslant 1\quad \iff\quad |\cos(x)|\leqslant 1.$ $-1 \leqslant \sin(x) \leqslant 1 \quad \iff \quad |\sin(x)| \leqslant 1.$
- Pour tout $x \in [0; 2\pi]$,

•
$$cos(x + 2\pi) = cos(x)$$
 et $sin(x + 2\pi) = sin(x)$.

Exercise 3: À quelle condition peut-on écrire $\sin(x) = \sqrt{1 - \cos^2 x}$?



Corollaire 21: Pour tous
$$x \in \mathbb{R}$$
 et $k \in \mathbb{Z}$:

$$\cos(x + k\pi) = (-1)^k \cos(x)$$
 et $\sin(x + k\pi) = (-1)^k \sin(x)$.

En particulier, $\forall k \in \mathbb{Z}$, $\cos(k\pi) = (-1)^k$ et $\sin(k\pi) = 0$.

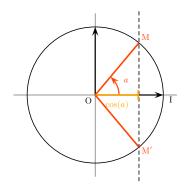
PTSI VINCI - 2024 II. TRIGONOMÉTRIE

I.3 Équations trigonométriques

Théorème 3 (Résolution d'équations trigonométriques élémentaires) : Soient a et b deux réels.

$$\cos(a) = \cos(b) \iff a \equiv b \ [2\pi]$$
 ou $a \equiv -b \ [2\pi]$
 $\sin(a) = \sin(b) \iff a \equiv b \ [2\pi]$ ou $a \equiv \pi - b \ [2\pi]$

$$(\cos(a) = \cos(b) \text{ et } \sin(a) = \sin(b)) \iff a \equiv b [2\pi].$$



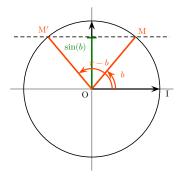


Figure VII.5 – Équations trigonométriques.

Exercice 5 : Sur un cercle trigonométrique, représenter les ensembles suivants :

$$\boxed{1} \cos(x) \quad \operatorname{sur}\left[\frac{\pi}{6} \; ; \; \frac{2\pi}{3}\right]$$

Exercice \mathcal{L} : Résoudre dans \mathbb{R} les inéquations suivantes et placer les solutions sur le cercle trigonométrique :

$$3 \sin(x) \leqslant \frac{\sqrt{3}}{2}$$

II TRIGONOMÉTRIE

$$\begin{split} \sin(x) &= \frac{\text{Oppos\'e}}{\text{Hypot\'enuse}} = \frac{\text{HM}}{\text{OM}}.\\ \cos(x) &= \frac{\text{Adjacent}}{\text{Hypot\'enuse}} = \frac{\text{OH}}{\text{OM}}.\\ \tan(x) &= \frac{\sin(x)}{\cos(x)} = \frac{\text{Oppos\'e}}{\text{Adjacent}} = \frac{\text{HM}}{\text{OH}}. \end{split}$$

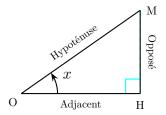


Figure VII.6 – Trigonométrie dans un triangle.

PTSI VINCI - 2024 II. TRIGONOMÉTRIE

$$c^2 = a^2 + b^2 - 2ab\cos\widehat{\mathbf{C}}.$$

$$b^2 = a^2 + c^2 - 2ac\cos\widehat{\mathbf{B}}.$$

$$a^2 = b^2 + c^2 - 2bc\cos\widehat{\mathbf{A}}.$$

$$\frac{\sin\widehat{\mathbf{A}}}{a} = \frac{\sin\widehat{\mathbf{B}}}{b} = \frac{\sin\widehat{\mathbf{C}}}{c} = \frac{1}{2\mathbf{R}} = \frac{2\mathcal{A}_{\mathrm{ABC}}}{abc}.$$
 Avec $p = \frac{1}{2}(a+b+c)$, on a $\mathcal{A}_{\mathrm{ABC}} = \sqrt{p(p-a)(p-b)(p-c)}.$

Figure VII.7 – Théorème d'Al-Kashi, relation des sinus et formule de Héron d'Alexandrie.

II.1 Formules de duplication

Proposition 4 (Formule d'addition) : Pour tous réels a et b, on a :

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b). \qquad \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b).$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b). \qquad \sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b).$$

Proposition 5 (Formule de duplication) : Pour tout réel a, on a :

■
$$\sin(2a) = 2\sin(a)\cos(a)$$
.
■ $\cos(2a) = \cos^2(a) - \sin^2(a)$
= $2\cos^2(a) - 1$
= $1 - 2\sin^2(a)$.

Exercise 7: Montrer que $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, |\sin(nx)| \leq n |\sin(x)|$.

II.2 Formules de linéarisation

Proposition 6 (Formule de linéarisation dite de Carnot) : Soit $a \in \mathbb{R}$:

Proposition 7 : Soient a et b deux réels :

- $\sin(a)\cos(b) = \frac{1}{2} [\sin(a+b) + \sin(a-b)].$

Exercice 8:

- 2 En déduire la valeur exacte de $\cos\left(\frac{3\pi}{8}\right)$.
- **3** Montrer que $\sqrt{3-2\sqrt{2}} = \sqrt{2} 1$.

FONCTIONS CIRCULAIRES

Définition 2 : La fonction cosinus (resp. sinus) est la fonction qui à tout réel associe son cosinus (resp. son sinus).

$$\cos: x \longmapsto \cos(x)$$
 $\sin: x \longmapsto \sin(x)$.

III.1 Domaine de définition, parité et périodicité

Proposition 8 (Cosinus et Sinus):

- Les fonctions \cos et sin sont définies sur \mathbb{R} à valeurs dans [-1;1].
- La fonction cos est *paire*. La fonction sin est *impaire*.

Définition 3 (Fonction périodique) : On dit d'une fonction $f: \mathbb{R} \mapsto \mathbb{R}$ qu'elle est périodique de période T ou T-périodique s'il existe un réel T > 0 tel que :

$$\forall\, x\in \mathscr{D}_f,\ x+\mathrm{T}\in \mathscr{D}_f,\quad \text{ et }\quad f(x+\mathrm{T})=f(x). \tag{VII.1}$$

Corollaire 81: Les fonctions cosinus et sinus sont périodiques de période 2π .

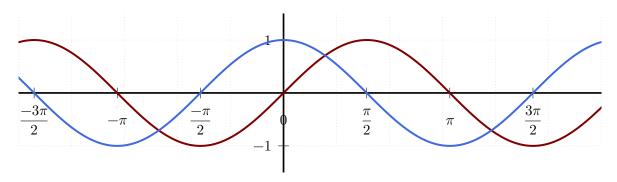


Figure VII.8 – $x \mapsto \cos(x)$ et $x \mapsto \sin(x)$ sont 2π -périodiques.

Exercice 9 : Vérifier que la fonction $f: x \longmapsto \sin{(6x-3)}$ est $\frac{\pi}{3}$ -périodique.

Compléments sur les fonctions périodiques :

— Une fonction T-périodique est aussi kT-périodique pour $k \in \mathbb{Z}$. On appelle *période de f*, le plus petit réels strictement positif T vérifiant (VII.1) :

$$\mathbf{T} = \inf \big\{ t \in \mathbb{R}_+^* \, / \, \forall \, x \in \mathscr{D}_f, \; x+t \in \mathscr{D}_f \; \; \mathrm{et} \; \; f(x+t) = f(x) \big\}.$$

ATTENTION

Il existe des fonctions périodiques n'admettant pas de période minimale, par exemple $\mathbb{1}_{\mathbb{Q}}.$

— Alors qu'une fonction peut être paire ou impaire sur un intervalle borné à condition qu'il soit symétrique par rapport à O, l'invariance par translation du domaine de définition d'une fonction périodique lui impose d'être nécessairement infini.

Exercise IO : Soit
$$f \in \mathcal{F}\left(\mathbb{R}\,;\mathbb{R}\right)$$
 vérifiant $\forall\,x\in\mathbb{R},\,f(x)\neq3$ et $f(x+1)=\frac{f(x)-5}{f(x)-3}$.

Montrer que f est périodique de période 4.

Proposition 9 (Interprétation graphique): Une fonction f est T-périodique si, et seulement si sa courbe représentative \mathcal{C}_f est invariante par translation de vecteur $T\vec{\imath}$.

Méthode I (Restriction du domaine d'étude):

Ii la fonction est T-périodique, on restreint son étude à un segment de longueur T et on complète la courbe par translations de vecteur $T\vec{\imath}$.

Exercice $\| : \text{ Proposer un domaine d'étude minimal pour } f : x \longmapsto \left(\sin\left(\frac{1}{3}x\right) - \sin\left(\frac{1}{5}x\right)\right)^2$.

Proposition O (Opérations sur les fonctions périodiques) : Soient $T \in \mathbb{R}_+^*$, $f: I \mapsto \mathbb{R}$ et $g: I \mapsto \mathbb{R}$ deux fonctions T-périodiques.

- Les fonctions f+g, $f\times g$ sont aussi T-périodiques, ainsi que $\frac{f}{g}$ si g ne s'annule pas.
- Pour tout a > 0, $\forall b \in \mathbb{R}$, la fonction $x \mapsto f(ax + b)$ est $\frac{\mathbf{T}}{a}$ -périodique.

Exemple 2 : La fonction $x \mapsto \cos(5x)$ est $\frac{2\pi}{5}$ -périodique et un domaine d'étude sera $\left[0; \frac{\pi}{5}\right]$ par périodicité et parité.

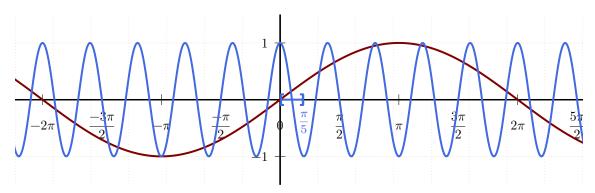


Figure VII.9 – $x \mapsto \cos(5x)$ et $x \mapsto \sin(\frac{x}{2})$. En physique, on parle de dilatation temporelle.

III.2 Continuité, dérivabilité

Théorème II (Continuité): Les fonctions cosinus et sinus sont continues sur R.

Théorème 12 (Nombres dérivés en 0) :

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1 \qquad \text{ et } \qquad \lim_{x\to 0}\frac{\cos(x)-1}{x}=0.$$

Le théorème (12) permet surtout d'affirmer que les fonctions sin et cos sont dérivables en 0. En effet, les taux d'accroissement en 0 de ces fonctions s'écrivent :

$$\frac{\sin(0+x)-\sin(0)}{x}=\frac{\sin(x)}{x} \quad \text{ et } \quad \frac{\cos(0+x)-\cos(0)}{x}=\frac{\cos(x)-1}{x}.$$

D'où,
$$\left(\sin(x)\right)'(0) = 1$$
 et $\left(\cos(x)\right)'(0) = 0$.

Remarque : Les courbes représentatives des fonctions cos et sin admettent ainsi, respectivement, comme tangente à l'origine les droites d'équation :

$$(T_{\cos}): y = 1$$
 et $(T_{\sin}): y = x$.

Exercice 12:

Montrer que
$$\frac{1-\cos(x)}{x^2} = \frac{1}{2} \left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2$$
.

Théorème 13 (Dérivabilité) : Les fonctions cos et sin sont dérivables sur $\mathbb R$ et pour tout réel x,

$$\cos'(x) = -\sin(x)$$
 et $\sin'(x) = \cos(x)$.

Corollaire 13.1 (Fonctions composées) : Soit u une fonction dérivable sur \mathbb{R} .

Alors, les fonctions $\cos u$ et $\sin u$ sont dérivables sur \mathbb{R} et, $\forall x \in \mathbb{R}$, on a :

$$\Big(\cos\big(u(x)\big)\Big)' = -u'(x) \times \sin\big(u(x)\big) \quad \text{ et } \quad \Big(\sin\big(u(x)\big)\Big)' = u'(x) \times \cos\big(u(x)\big).$$

Exercice |3|: Déterminer le domaine de dérivabilité \mathscr{D}_f et calculer la fonction dérivée de $f: x \longmapsto \frac{\cos(x) + 2}{\sin^2(x) + 2}$.

III.3 Variations et représentation graphique

Théorème 14:

- La fonction cosinus est décroissante sur $[0; \pi]$.
- La fonction sinus est croissante sur $\left[0; \frac{\pi}{2}\right]$ puis décroissante sur $\left[\frac{\pi}{2}; \pi\right]$.

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$-\sin(x)$		+	0	<u>:</u>	
cos	-1		× ¹ \	0	_1

x	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
$\cos(x)$		+	0	<u> </u>	
sin	-1	0	1_	0	- 1

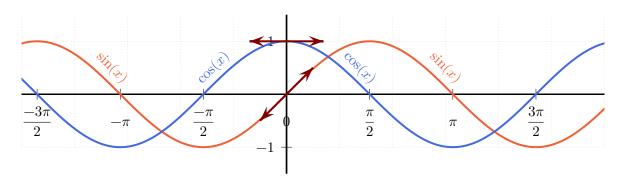
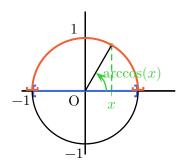


Figure VII.10 – Tableaux de variation et courbes représentatives des fonctions $x \mapsto \cos(x)$ et $x \mapsto \sin(x)$ sur \mathbb{R}

Exercice H: Étudier la fonction $f: x \mapsto \sin^2(x) + \cos(x)$ et préciser les intersections de sa courbe représentatif avec l'axe des abscisses.

FONCTIONS CIRCULAIRES RÉCIPROQUES

IV.1 Arccosinus et Arcsinus



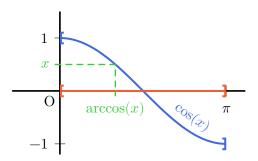
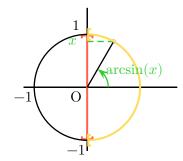


Figure VII.11 – La fonction cos est continue strictement décroissante de $[0;\pi]$ sur [-1;1]. Elle y réalise donc une bijection.



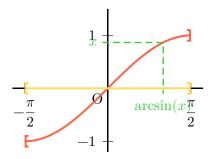


Figure VII.12 – La fonction sin est continue strictement croissante de $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ sur [-1; 1]. Elle y réalise donc une bijection.

Définition 4 (Arccosinus et Arcsinus): On appelle:

- fonction arccosinus, notée arccos, la bijection réciproque de la fonction $\cos_{[0:\pi]}$ corestreinte à [-1;1].
- fonction arcsinus, notée \arcsin , la bijection réciproque de la fonction $\sin_{\left[-\frac{\pi}{2};\frac{\pi}{2}\right]}$ corestreinte à [-1;1].

Pour x dans [-1;1], $\arccos(x)$ est l'angle de $[0;\pi]$ dont le cosinus vaut x. Même chose pour $\arcsin(x)$ avec le sinus dans $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Corollaire 14.1 (Formule de réciprocité) : Les fonctions arccos et arcsin sont définies sur [-1;1] et on a :

- $\begin{array}{ll} \bullet \ \forall \, x \in [-1\,;1], & \cos\big(\arccos(x)\big) = x. \\ \bullet \ \forall \, x \in [0\,;\pi], & \arccos\big(\cos(x)\big) = x. \end{array} \qquad \begin{array}{ll} \bullet \ \forall \, x \in [-1\,;1], & \sin\big(\arcsin(x)\big) = x. \\ \bullet \ \forall \, x \in \left[-\frac{\pi}{2}\,;\frac{\pi}{2}\right], & \arcsin\big(\sin(x)\big) = x. \end{array}$

Exemples 3 (Arccosinus):

 $arccos(0) = \frac{\pi}{2}$

$$\cos \left(\arccos \left(\frac{\sqrt{2}}{2} \right) \right) = \frac{\sqrt{2}}{2}.$$

$$\arccos\left(\cos\left(\frac{2\pi}{3}\right)\right) = \arccos\left(-\frac{1}{2}\right) = \frac{2\pi}{3}.$$

Mais ATTENTION $\arccos\left(\cos\left(-\frac{\pi}{6}\right)\right) = \arccos\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \neq -\frac{\pi}{6}$.

Exemples 4 (Arcsinus):

- arcsin $\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$ et $\arcsin(-1) = -\frac{\pi}{2}$.
- $\sin\left(\arcsin\left(\frac{\sqrt{2}}{2}\right)\right) = \frac{\sqrt{2}}{2}.$
- $\arcsin\left(\sin\left(\frac{\pi}{6}\right)\right) = \arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}.$

Mais ATTENTION $\arcsin\left(\sin\left(\frac{3\pi}{4}\right)\right) = \arcsin\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \neq \frac{3\pi}{4}$.

Exercice |S|: Étudier la parité et la périodicité puis tracer la courbe de la fonction $x \mapsto \arccos(\cos(x))$ sur \mathbb{R} .

IV.2 Dérivabilité

Proposition 15:

■ Les fonctions arccos et arcsin sont continues sur [-1;1] et dérivables sur]-1;1[et on a :

$$\forall x \in]-1; 1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}} = -\arccos'(x).$$

En particulier,

- la fonction arccos est strictement décroissante sur [-1;1].
- la fonction arcsin est strictement croissante sur [-1;1].
- La fonction arcsin est impaire.

Remarques:

- La courbe de arcsin est donc symétrique par rapport à l'origine et on pourrait montrer, si c'était au programme, que le courbe de arccos admet le point $\left(0; \frac{\pi}{2}\right)$ comme centre de symétrie.
- En particulier, les courbes représentatives des fonctions arccos et arcsin admettent, respectivement, comme tangentes à l'origine les droites d'équation :

$$(\mathbf{T}_{\mathrm{arccos}}): \ y = \frac{\pi}{2} - x \quad \text{ et } \quad (\mathbf{T}_{\mathrm{arcsin}}): \ y = x.$$

— Les fonctions arccos et arcsin ne sont pas donc pas dérivables en 1 et -1 mais leur courbe représentative y admet deux demi-tangentes verticales.

Corollaire |5|: Pour toute fonction u dérivable sur un intervalle I à valeurs dans]-1;1[, $\arccos(u)$ et $\arcsin(u)$ sont dérivables sur I et on a :

$$\forall\,x\in\mathcal{I},\quad \Big(\arcsin(u)\Big)'(x)=\frac{u'(x)}{\sqrt{1-u^2(x)}}=-\Big(\arccos(u)\Big)'(x).$$

IV.3 Courbes représentatives

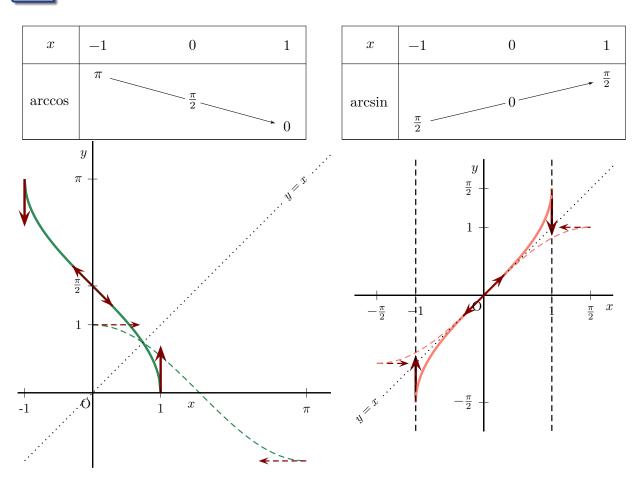


Figure VII.13 – Tableaux de variation et courbes représentatives de $x \mapsto \arccos(x)$ et $x \mapsto \arcsin(x)$ sur [-1; 1].

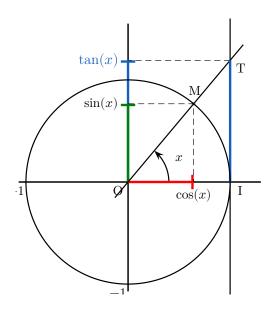
En dash, les courbes de cos et sin.

Remarque : Les courbes de sin et arcsin sont également tangentes à l'origine.

FONCTIONS TANGENTE ET RÉCIPROQUE

V.1

Fonction tangente



Lorsque $x \not\equiv \frac{\pi}{2}$ [π], on note T l'intersection de (OM) avec la tangente au cercle en I(1,0).

L'ordonnée de T est appelée tangente de x, notée $\tan(x)$.

En considérant des longueurs algébriques, d'après le théorème de Thalès appliqué au triangle OIT, on a :

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Figure VII.14 –
$$\tan(x)$$
 pour $x \not\equiv \frac{\pi}{2} \ [\pi]$.

Pour tout x réel, $\cos(x) \neq 0 \iff x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}.$

Définition 5 (Tangente) : On appelle fonction tangente, notée tan, la fonction définie par :

$$\forall x \in \bigcup_{k \in \mathbb{Z}} \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[, \tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Proposition 16 (Domaine d'étude):

- La fonction tan est impaire.
- La fonction tan est π -périodique.
- La fonction tan est continue et dérivable sur tout intervalle de la forme $\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[\text{ où } k \in \mathbb{Z} \text{ et on a :}$

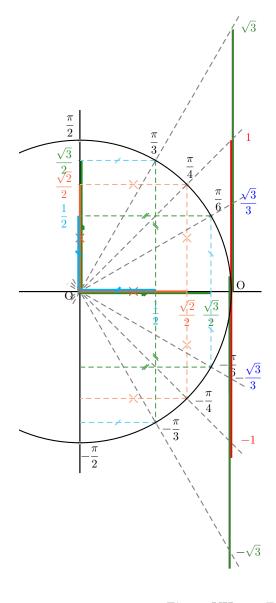
$$\forall \, x \in \bigcup_{k \in \mathbb{Z}} \left] - \frac{\pi}{2} + k\pi \, ; \frac{\pi}{2} + k\pi \left[\, , \, \tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)} \right] \right].$$

En particulier, la fonction tan est strictement croissante sur tout intervalle de la forme $\left]-\frac{\pi}{2}+k\pi\,;\frac{\pi}{2}+k\pi\left[,\,k\in\mathbb{Z}.\right.\right.$

On étudiera donc la fonction tan sur l'intervalle $\left[0;\frac{\pi}{2}\right[$ et on complètera la courbe représentative par symétrie centrale puis translations de vecteur $\pi \vec{i}$.

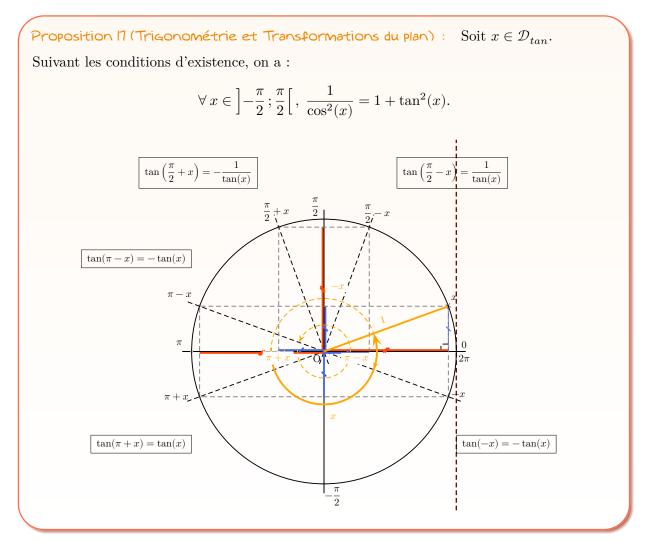
Comme $\tan'(0) = 0$, la courbe représentative de tan admet comme tangente à l'origine la droite d'équation :

$$(\mathbf{T}_{\mathrm{tan}}):\; y=x.$$



Radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$	0

 ${\bf Figure~VII.15}-{\bf Tangente~d'angles~remarquables}.$



Exercice 17: À quelle condition peut-on écrire $\cos(x) = \frac{-1}{\sqrt{1 + \tan^2(x)}}$.

Proposition 18 (Limite et croissance comparée):

$$\lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty.$$

$$\lim_{x \to -\frac{\pi}{2}^+} \tan(x) = -\infty.$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1.$$

La courbe représentative admet donc une asymptote d'équation $x=\frac{\pi}{2}$ puis, par symétrie et translation, des asymptotes d'équation $x=\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}.$

On obtient donc son tableau de variation et sa courbe représentative (VII.17).

Proposition 19 (É quations trigonométriques):

$$tan(x) = tan(y) \iff x \equiv y [\pi].$$

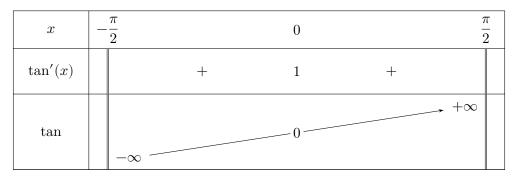


Figure VII.16 – Tableau de variation $x \mapsto \tan(x)$ sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

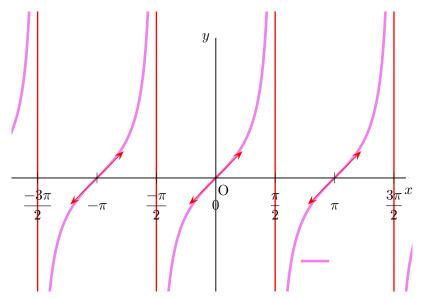


Figure VII.17 – Courbe représentative de $x \mapsto \tan(x)$ sur $\bigcup_{k \in \mathbb{Z}} \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$.

Proposition 20:

Formule d'addition : Pour tout $(a;b) \in \mathbb{R}^2$ tel que $\tan(a)$, $\tan(b)$, $\tan(a+b)$ ou $\tan(a-b)$ soient définis.

Formule de duplication : Pour tout $(a; \in) \mathbb{R}$ tel que $\tan(a)$, $\tan 2a$ soient définis.

$$\tan(2a) = \frac{2\tan(a)}{1 - \tan^2(a)}.$$

Formule de factorisation par l'angle moitié Soient p et q deux réels tels que $\tan(p)$ et $\tan(q)$ soient définis :

Formule de l'angle moitié : Pour tout x réel tel que $t = \tan\left(\frac{x}{2}\right)$ soit défini.

Exercice 8: Sans s'occuper du domaine de définition, exprimer $\frac{\cos(x)}{1+\sin(x)}$ en fonction de $u = \tan\left(\frac{x}{2}\right)$.

V.2 Fonction arctangente

La fonction tan : $\mathcal{D}_{tan}\,\longmapsto\,\mathbb{R}$ n'est pas bijective. Elle n'admet donc pas de réciproque (sur \mathbb{R}

La restriction de la fonction tan à $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ est bijective. On la note $\tan_{\left[\right] -\frac{\pi}{2}; \frac{\pi}{2} \right[}$.

$$\tan_{\left|\right|-\frac{\pi}{2};\frac{\pi}{2}\left[}:\quad\left]-\frac{\pi}{2};\frac{\pi}{2}\left[\right.\longmapsto\,\mathbb{R}\right.$$

$$x\qquad \qquad \tan(x)$$

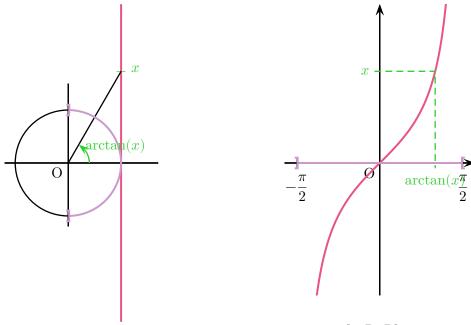


Figure VII.18 – La fonction tan est continue et strictement monotone de $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ sur \mathbb{R} . Elle y réalise donc une bijection.

Définition 6 (Arctangente): On appelle fonction arctangente, notée arctan, la bijection réciproque de la fonction $\tan_{\left|\left|-\frac{\pi}{2};\frac{\pi}{2}\right|\right|}$ à valeurs dans \mathbb{R} .

Corollaire 201 (Formule de réciprocité) : La fonction arctan est définie sur R et on a :

 $\forall x \in \mathbb{R}, \tan(\arctan(x)) = x.$

• $\forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, \arctan(\tan(x)) = x.$

Exemples 5:

Mais ATTENTION
$$\arctan\left(\tan\left(\frac{5\pi}{6}\right)\right) = \arctan\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} \neq \frac{5\pi}{6}.$$

Exercice 19: Montrer que:

$$\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$$
 (Hutton, 1776)

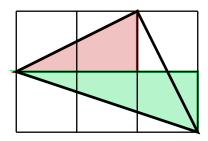


Figure VII.19 –
$$\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$$
.

Proposition 21:

 \blacksquare La fonction arctan est continue sur $\mathbb R$ et on a :

$$\lim_{x\to +\infty}\arctan(x)=\frac{\pi}{2}\quad \text{ et } \quad \lim_{x\to -\infty}\arctan(x)=-\frac{\pi}{2}.$$

 \blacksquare La fonction arctan est dérivable sur $\mathbb R$ et on a :

$$\forall x \in \mathbb{R}, \ \operatorname{arctan}'(x) = \frac{1}{1+x^2}.$$

En particulier, arctan est strictement croissante sur \mathbb{R} .

La fonction arctan est impaire.

En particulier, la courbe représentative de tan admet deux asymptotes en l'infini d'équation $y=\pm\frac{\pi}{2}$ et la première bissectrice comme tangente à l'origine.

Remarque : Les courbes de tan et arctan sont tangentes à l'origine.

Exercice 20 : Étudier les asymptotes de la fonction f de \mathbb{R} vers \mathbb{R} définie par :

$$f(x) = (x+1) \arctan x.$$

Corollaire 21. : Pour toute fonction u dérivable sur un intervalle I, $\arctan(u)$ est dérivable sur I et on a :

$$\forall x \in I, \left(\arctan(u)\right)'(x) = \frac{u'(x)}{1 + u^2(x)}.$$

Exercice 21 : Étude et représentation graphique de $f: x \longmapsto \arctan\left(\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}\right)$.

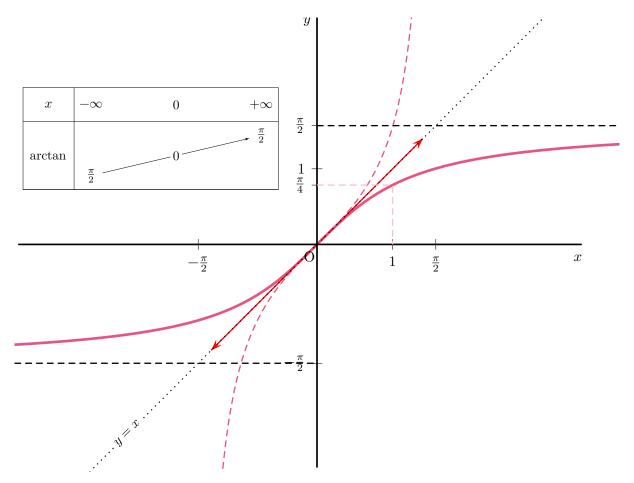


Figure VII.20 – Tableau de variation et courbe représentative de $x \mapsto \arctan(x)$ sur \mathbb{R} . En dash, la courbe de tan.

Proposition 22: Pour tout $x \in \mathbb{R}^*$, on a:

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = signe(x) \times \frac{\pi}{2}.$$

TABLEAU RÉCAPITULATIF

f(x)	Domaine de définition	Domaine de dérivabilité	f'(x)
$\cos(x)$	п	<u> </u>	$-\sin(x)$
$\sin(x)$	ַו	?	$\cos(x)$
$\tan(x)$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + r \right\}$	$n\pi, n \in \mathbb{Z}$	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$
$\arccos(x)$	[1.1]]_1.1[$-\frac{1}{\sqrt{1-x^2}}$
$\arcsin(x)$	[-1;1]] -1;1[$\frac{1}{\sqrt{1-x^2}}$
$\arctan(x)$	[?	$\frac{1}{1+x^2}$