Exemple 26

Exemple 28: Avec le changement de variables $u = \tan\left(\frac{x}{2}\right)$, on obtient :

$$\int_0^{\frac{\pi}{3}} \frac{\mathrm{d}t}{1 - \sin(t)} =$$

Prénom:.... Nom:....

Primitives

Dans ce devoir, il sera reconnu que toutes les primitives, sauf mention contraire, seront trouvées à une constante additive près qu'il ne sera donc pas nécessaire de faire figurer.

Exemple $| : Une primitive de x \mapsto e^{\omega x} est$ pour .

Exercice I: Montrer rapidement qu'une primitive de $f:x \mapsto \frac{1}{\sqrt{x^2+1}}$ sur \mathbb{R} est

$$F: x \longmapsto \ln\left(x + \sqrt{x^2 + 1}\right).$$

Exemple 2:

La fonction ln est l'unique primitive de . . .

Exemple +: Une primitive sur $\mathbb R$ de la fonction $x \mapsto 1 + \mathrm{i}\, x$ est . . .

Exercice 2: $\int_{-\infty}^{\infty} t^2 + i \cos(t) dt = \dots$

Exercice 3: $\int_{-x}^{x} (3t-1) (3t^2-2t+3)^3 dt = \dots$.

■ Il faudra également être capable de reconnaître immédiatement les dérivées de composées les plus classiques, qui permettent de calculer directement des intégrales pas toujours évidentes à repérer.

5

- $\bullet \ \int_0^\pi \cos(t) \sin^3(t) \, \mathrm{d}t = \qquad \qquad \bullet \ \int_0^1 t \, \mathrm{e}^{t^2} \, \mathrm{d}t = \qquad \qquad .$

Exercice 5 :	Déterminer $\int_{-\infty}^{x} e^{-t}$	$\cos(t) dt.$	
			 •

Exercice $m{b}$: Sans justification, donner la dérivée de la fonction définie par $x \longmapsto \int_{x^2}^{2x^2} \ln(1+t) \, \mathrm{d}t$.

Exemple 13 : À l'aide d'une IPP justifiée, calculer : $\int_{-\infty}^{x} t \sin(t) \, \mathrm{d}t =$.

Exercice 8: Déterminer une primitive de $x \mapsto \arcsin(x)$ sur]-1;1[.

Exercice 9 : Calculer $\int_3^6 \frac{1}{\sqrt{6t-t^2}} dt$ en posant $u = \frac{t-3}{3}$.

Exemple 15 : En posant $x=\sin(u)$, calculer $\int_0^1 \sqrt{1-x^2}\,\mathrm{d}x$. $\int_0^1 \sqrt{1-x^2}\,\mathrm{d}x = \dots$

Exercice $\| : \text{Calculer } \int^x \frac{1}{\sqrt{1+t}+\sqrt{1-t}} \, \mathrm{d}t.$

Exemple 17: $\blacksquare \ \forall \, n \in \mathbb{N} \text{ et } a > 0, \quad \int_{-a}^a x^{2n} \, \mathrm{d}x = \qquad \qquad \text{et } \int_{-a}^a x^{2n+1} \, \mathrm{d}x = \ldots \ldots .$

Exemple 18: Primitives de $x \mapsto \frac{1}{\sqrt{b^2 - x^2}}$ avec b > 0. $\boxed{1} \int_{-\infty}^{x} \frac{\mathrm{d}t}{\sqrt{b^2 - t^2}} = \dots$

Exemple 20 : La décomposition en éléments simples de $f(x) = \frac{x+1}{(x-1)^2(x+2)}$ s'écrit :

$$f(x) =$$
 .

Toute primitive de f sur tout intervalle I contenu dans est de la forme

$$x \longmapsto$$
 .

Exemple 24 (Cas où $\Delta>0$) : $\int^x \frac{\mathrm{d}t}{2t^2-t-1} = \dots \label{eq:delta}$

Exercice Π : Calculer une primitive de $x \mapsto \frac{1}{\operatorname{sh}(x)}$ en précisant le ou les intervalles considérés.

Lycée Jules Garnier