Test nº 13

Test nº13

Exercice Π : Calculer une primitive de $x \mapsto \frac{1}{\cos(x)}$ en précisant le ou les intervalles considérés.

Exemple 26

$$\int_{-\infty}^{\infty} \cos(t) \sin^3(t) dt =$$

$$\int_{-\infty}^{\infty} \cos(t) \sin^3(t) dt = \dots$$

$$\int_{-\infty}^{\infty} \cos^3(t) dt = \dots$$

Exemple 27

$$\int_0^{\frac{\pi}{2}} \cos(3t)\cos(4t) \,\mathrm{d}t = \qquad .$$

4

Prénom: Nom:....

Primitives

Dans ce devoir, il sera reconnu que toutes les primitives, sauf mention contraire, seront trouvées à une constante additive près qu'il ne sera donc pas nécessaire de faire figurer.

Exemple $| : x \mapsto x \text{ et } x \mapsto x + 2 \text{ sont des primitives de}$ sur \mathbb{R} .

Exercice I: Montrer rapidement qu'une primitive de $f: x \mapsto \frac{1}{\sqrt{x^2-1}}$ sur]1; $+\infty$ [est

$$F: x \longmapsto \ln\left(x + \sqrt{x^2 - 1}\right).$$

Exemple 12: $x \mapsto \int_0^x \mathrm{e}^{-t^2} \, \mathrm{d}t$ est l'unique qui qui

1

Exemple 3

$$\blacksquare \ x \longmapsto \sum_{k=0}^n a_k x^k \ \text{admet pour primitive} \qquad \qquad \text{sur } \mathbb{R}.$$

Exercice 2: $\int_{0}^{x} e^{-it} dt = \dots$

Exercise 3: $\int_{-\infty}^{x} \frac{\ln(t+3)}{t+3} dt = \dots$

Exemple 10

$$\quad \blacksquare \ \forall \, \alpha \in \mathbb{R}_+, \, \int_0^1 x^\alpha \, \mathrm{d} x = \, \dots \, .$$

En particulier, retenez que, $\forall\,n\in\mathbb{N},\,\int_0^1t^n\,\mathrm{d}t=$.

Exercice 5 : Déterminer $\int_{-\infty}^{\infty} e^{-t} \sin(t) dt$.	

 \vdash Sans justification, donner la dérivée de la fonction définie par $x \mapsto \int_{-1}^{2x^2} \arctan(t) dt$.

Exemple 13 : À l'aide d'une IPP justifiée, calculer : $\int_{-\infty}^{\infty} 2t \arctan(t) dt =$

Exercice 8: Déterminer une primitive de $x \mapsto \arctan(x)$ sur \mathbb{R} .

Exercice 9 : Calculer $\int_{-\sqrt{2}}^{\sqrt{6}} \frac{1}{\sqrt{6-t^2}} dt$ en posant $u = \frac{t}{\sqrt{6}}$.

Example 16: En posant $u=t+\sqrt{t^2+1}$, calcular $\int_0^1 \frac{1}{\sqrt{1+t^2}} \, \mathrm{d}t$.

$$\int_0^1 \frac{1}{\sqrt{1+t^2}} \, \mathrm{d}t = \dots$$

Exercice $\| : \text{Calculer } \int_{-t}^{x} \frac{\sqrt{1+t^6}}{t} dt.$

Exemple $|\mathcal{B}|$: Primitives de $x \mapsto \frac{1}{(x-a)^2 + b^2}$ avec $a \in \mathbb{R}$.

Exemple 19 : La décomposition en éléments simples de $f(x) = \frac{2x+3}{(x+1)(x-2)}$ s'écrit :

$$f(x) =$$
 .

Toute primitive de f sur tout intervalle I contenu dans _____ est de la forme :

Exemple 22 (Cas où $\Delta < 0$) :