

Les nombres réels

Contenu

I. Nombres e	ntiers, décimaux, rationnels	
I.1		1
I.2		2
I.3	L'ensemble des réels	2
II. Relation d	ordre sur \mathbb{R}	
II.1	Être inférieur à	2
II.2	Borne supérieure, borne inférieure	3
II.3	Fonctions bornées	6
III. Topologie	$de \ \mathbb{R} \dots $ 6	
III.1	La droite numérique achevée	6
III.2	Intervalles de \mathbb{R}	7
III.3	Voisinages	8
IV. Opérateurs	s réels	
IV.1	Valeur absolue	0
IV.2	Partie entière	3
V. Notion de	densité	
V.1	Place des rationnels et des irrationnels dans \mathbb{R}	5
V.2	Approximations décimales	6

I

NOMBRES ENTIERS, DÉCIMAUX, RATIONNELS

I.1 Rappels sur les rationnels

— Tout rationnel peut s'écrire de différentes manières sous forme de fractions, par exemple $\frac{p}{q} = \frac{2p}{2q} = ..., \text{ mais tout nombre rationnel s'écrit de manière unique sous forme de fraction}$ irréductible i.e. sous la forme $\frac{p}{q}$ avec $p \in \mathbb{Z}, q \in \mathbb{N}^*$ et p et q premiers entre eux.

L'égalité des produits en croix, caractérise ces classes d'équivalence :

$$\forall \left(\frac{a}{b}; \frac{c}{d}\right) \in \mathbb{Q}^2, \quad \frac{a}{b} = \frac{c}{d} \iff ad = bc \quad \text{avec } b \neq 0 \text{ et } d \neq 0.$$

— L'ensemble $\mathbb Q$ est muni de deux lois de composition interne :

$$\frac{p}{q} + \frac{p'}{q'} = \frac{pq' + p'q}{qq'}$$
 et $\frac{p}{q} \times \frac{p'}{q'} = \frac{pp'}{qq'}$.

Exercice | : Mettre sous la forme d'une seule fraction, qu'on écrira sous la forme la plus simple possible :

$$\text{A=} \ \frac{a^3-b^3}{(a-b)^2} - \frac{(a+b)^2}{a-b} \ \text{pour} \ (a,b) \in \mathbb{Z}^2 \text{, distincts deux à deux.} \\ \underline{6(n+1)}$$

$$\mathrm{B} = \ \frac{\frac{6(n+1)}{n(n-1)(2n-2)}}{\frac{2n+2}{n^2(n-1)^2}} \ \mathrm{pour} \ n \in \mathbb{N}^* \backslash \{1\}.$$

I.2 L'ensemble des rationnels est insuffisant :

En termes d'approximations numériques, \mathbb{Q} peut paraître suffisant en sciences appliquées. Le problème se pose lorsqu'on a besoin de connaître la valeur exacte de certaines grandeurs.

Par exemple, peut-on mesurer dans \mathbb{Q} la longueur de la diagonale d'un carré de côté 1 ? D'après le théorème de Pythagore, cela revient à se demander s'il existe un rationnel dont le carré est égal à 2, or nous avons déjà établi que la réponse est négative : $\sqrt{2} \notin \mathbb{Q}$.

Cette lacune de $\mathbb Q$ avait été remarquée par les Pythagoriciens, ce qui a conduit les mathématiciens à introduire de nouveaux nombres, les *irrationnels*, en concevant un ensemble plus vaste que $\mathbb Q$, l'ensemble des *nombres réels* noté $\mathbb R$.

I.3 L'ensemble des réels

Définition l : L'ensemble des abscisses des points d'une droite orienté est l'ensemble des nombres réels.

L'ensemble des nombres réels est noté \mathbb{R} .

Les abscisses des points de la demie-droite [OI) appartiennent à \mathbb{R}_+ .

$oxed{II}$ Relation d'ordre sur ${\mathbb R}$

II.1 Être inférieur à

Définition 2 : Soit $(x; y) \in \mathbb{R}^2$.

On dit que « x est inférieur à y » et on note $x \leq y$ si, et seulement si $y - x \in \mathbb{R}_+$.

Théorème 1 :

 $(\mathbb{R}; \leq)$ est un ensemble totalement ordonné.

En particulier, tous les éléments de \mathbb{R} sont comparables :

$$\forall (x;y) \in \mathbb{R}^2, x \leqslant y \quad \text{ou} \quad y \leqslant x.$$

Remarques:

- La relation \geqslant est aussi une relation d'ordre total sur \mathbb{R} .
- La relation < est définie par $x < y \iff y x \in \mathbb{R}_+^* \iff x \leqslant y$ et $x \neq y$.

ATTENTION La relation < n'est pas une relation d'ordre car elle n'est ni réflexive, ni anti-symétrique.

Proposition 2 (Compatibilité de \leq avec + et \times) : Soient a, b, c et d des nombres réels.

- 1 Si $a \le b$ et $c \le d$ alors $a + c \le b + d$.
- 2 Si $0 \leqslant a \leqslant b$ et $0 \leqslant c \leqslant d$ alors $ac \leqslant bd$.
 3 $a \leqslant b \iff -b \leqslant -a$.
- 4 Si a et b sont non nuls de même signe alors $a \leqslant b \iff \frac{1}{b} \leqslant \frac{1}{a}$.

En particulier,

- $a \leqslant b \iff \forall \lambda \in \mathbb{R}, \ a + \lambda \leqslant b + \lambda.$
- $\forall \lambda > 0, \ a \leqslant b \iff \lambda \ a \leqslant \lambda \ b \quad \text{ et } \quad \forall \lambda < 0, \ a \leqslant b \iff \lambda \ a \geqslant \lambda \ b.$

L'assertion 4 ne dit pas que la fonction inverse est décroissante sur \mathbb{R}^* mais seulement qu'elle est décroissante sur \mathbb{R}_{-}^* et sur \mathbb{R}_{+}^* .

On ne soustrait ni de divise des inégalités!

$$\begin{cases} 1 \leqslant 3 \\ 2 \leqslant 5 \end{cases} \quad \text{mais} \quad 1-2 > 3-5.$$

On pourra cependant les ajouter membre à membre ou les multiplier si tous les membres

Exercice 2 : Soient a, b des réels strictement positifs.

- $\boxed{1} \text{ Ordonner les réels } \frac{a+b}{2} \text{ et } \sqrt{ab}.$
- 2 Montrer que leur distance est majorée par $\frac{|b-a|^3}{8ah}$.

II.2 Borne supérieure, borne inférieure

Rappel I (Parties Bornées): Soit (E, \leq) un ensemble ordonné et A une partie de E.

On dit que:

- A est majorée dans E lorsque : $\exists M \in E, \forall x \in A, x \leq M$.
- A est minorée dans E lorsque : $\exists m \in E, \forall x \in A, m \leq x$.
- A est bornée dans E lorsque A est à la fois majorée et minorée.
- A admet un maximum lorsque : $\exists b \in A, \forall x \in A, x \leq b$.
- A admet un minimum lorsque : $\exists a \in A, \forall x \in A, a \leq x$.

Exemple : L'intervalle [0;1] admet 0 pour plus petit élément mais n'admet PAS de plus grand élément.

- 1 $0 \in [0; 1]$ et $\forall x \in [0; 1], 0 \leq x$ donc 0 est le plus petit élément de [0; 1].
- Supposons qu'il existe $M \in [0; 1[$ qui en soit le plus grand élément. Alors $M' = \frac{M+1}{2}$ vérifie, M < M'et $M' \in [0; 1]$ ce qui contredit la « maximalité » de M.

Il n'existe donc pas de plus grand élément dans [0;1].

Définition 3 (Borne supérieure):

- Soit A une partie majorée de ℝ. On appelle borne supérieure de A, notée sup (A), le plus petit des majorants de A.
- $lue{}$ Soit B une partie minorée de \mathbb{R} . On appelle borne inférieure de B, notée inf(B), le plus grand des minorants de B.

Les bornes inférieure et supérieure n'ont aucune raison d'exister.

Théorème 3 (Propriété de la Borne supérieure) :

Toute partie non vide et majorée de R possède une borne supérieure.

Ce théorème est faux dans \mathbb{Q} .

Par exemple $A = \{q \in \mathbb{Q}^+, q^2 \leq 2\}$ est non vide (elle contient 0) et majorée (par 10).

Si A admettait une borne supérieure $\alpha\in\mathbb{Q}$:

ATTENTION

- Si $\alpha^2 < 2$, alors, on peut trouver un entier n tel que $\alpha + \frac{1}{n} \in A$; absurde. Si $\alpha^2 > 2$, alors, on peut trouver un entier n tel que $\alpha \frac{1}{n}$ majore A; absurde. Si $\alpha^2 = 2$, alors $\alpha \notin \mathbb{Q}$; absurde.

Conclusion, A ne possède pas de borne supérieure.

On prendra garde au fait qu'une partie A peut posséder une borne supérieure a sans avoir de plus grand élément.

Réciproquement, si A possède un plus grand élément a, alors $a = \max(A) = \sup(A)$.

Exercice 3 : Compléter :

	$\min(A)$	$\inf(A)$	$\max(A)$	$\sup(A)$
$A = \{1\}$				
$A = \{2, 4\}$				
$\mathbf{A} = \left\{ \frac{1}{n} / n \in \mathbb{N}^* \right\}$				
$A = \{ x \in \mathbb{Q} / x^2 \leqslant 2 \}$				

Théorème 4 (Caractérisation de la Borne supérieure) : Soit A une partie majorée non vide de \mathbb{R} et $M \in \mathbb{R}$.

$$\begin{split} \mathbf{M} &= \sup \mathbf{A} \iff \left\{ \begin{array}{l} \mathbf{M} \text{ est un majorant de A} \\ \forall \, \mathbf{M}' \text{ majorant de A}, \, \mathbf{M} \leqslant \mathbf{M}' \end{array} \right. \\ &\iff \left\{ \begin{array}{l} \mathbf{M} \text{ est un majorant de A} \\ \forall \, b < \mathbf{M}, \, b \text{ n'est pas un majorant de A} \end{array} \right. \\ &\iff \left\{ \begin{array}{l} \forall \, x \in \mathbf{A}, \, x \leqslant \mathbf{M} \\ \forall \, \varepsilon \in \mathbb{R}_+^*, \, \exists \, x_\varepsilon \in \mathbf{A} \text{ tel que } \mathbf{M} - \varepsilon < x_\varepsilon. \end{array} \right. \end{split}$$

Exercice 4 : Sur le même modèle, écrire une caractérisation de la borne inférieure.

Corollaire 4.1 (Borne inférieure d'une partie non vide et minorée de \mathbb{R}): Toute partie non vide minorée de \mathbb{R} possède une borne inférieure.

Méthode I (Utilisation courante de la Borne supérieure) :

Soient A une partie de R admettant une borne supérieure.

- 1 Pour montrer que $\sup{(\mathbf{A})}\leqslant{\mathbf{M}}$, il suffit de montrer : $\forall~a\in{\mathbf{A}},~~a\leqslant{\mathbf{M}}$
- Pour montrer que $\sup{(A)}\geqslant M$, il suffit de montrer : $\exists\, a_0\in A,\quad a_0\geqslant M$;

Exemple 2: L'intervalle [0;1] admet 1 comme borne supérieure.

Par définition, $\forall x \in [0; 1[, x \le 1 \text{ donc } [0; 1[\text{ est une partie non vide est majorée. sup } ([0; 1[) \text{ existe d'après le théorème } (3) \text{ et on a :}$

$$\sup ([0;1[) \leqslant 1.$$

Soit $\varepsilon \in \mathbb{R}_+^*$ quelconque. Montrons que $1-\varepsilon$ n'est pas un majorant de $[0\,;1[$.

On sait déjà que
$$1-\varepsilon\in[0\,;1[,$$
 de même que $\frac{(1-\varepsilon)+1}{2}=1-\frac{\varepsilon}{2}.$

Comme $1-\varepsilon<1-\frac{\varepsilon}{2}<1,$ le réel $1-\varepsilon$ n'est pas un majorant de [0 ; 1[.

La réunion des points $\boxed{1}$ et $\boxed{2}$, montre que 1 est un majorant de [0;1[et que c'est le plus petit. Le réel 1 est donc la borne supérieure de [0;1[.

Exercice 5 : Soient A et B deux parties de \mathbb{R} non vides et bornées telles que $A \subset B$. Montrer que $\inf(B) \leqslant \inf(A)$ et $\sup(A) \leqslant \sup(B)$. PTSI VINCI - 2024 III. TOPOLOGIE DE \mathbb{R}

II.3 Fonctions bornées

Définition + (Fonction Bornées) : Soient I un sous-ensemble de \mathbb{R} et $f: I \mapsto \mathbb{R}$.

• Une fonction f est dite majorée sur I lorsqu'il existe un réel M tel que :

$$\forall x \in I, f(x) \leq M.$$

Le réel M est alors appelé un majorant de f (sur I).

On appelle alors borne supérieure de f sur I, notée $\sup(f)$, le réel

$$\sup_{\mathbf{I}}(f) = \sup \big\{ f(x), \ x \in \mathbf{I} \big\}.$$

• Une fonction f est dite *minorée* sur I lorsqu'il existe un réel m tel que :

$$\forall x \in I, f(x) \geqslant m.$$

Le réel m est alors appelé un minorant de f (sur I).

On appelle alors borne inférieure de f sur I, notée $\inf_{r}(f)$, le réel

$$\inf_{\mathbf{I}}(f)=\inf\big\{f(x),\ x\in\mathbf{I}\big\}.$$

• Une fonction f est dite $born\acute{e}e$ lorsqu'elle est à la fois majorée et minorée.

Exercice \mathcal{L} : Soit I un intervalle de \mathbb{R} et $f, g \in \mathcal{F}(I; \mathbb{R})$.

1 Démontrer que si f et g sont majorées alors f+g est majorée et

$$\sup_{\mathbf{I}} (f+g) \leqslant \sup_{\mathbf{I}} f + \sup_{\mathbf{I}} g. \tag{XII.1}$$

- Donner un exemple où l'inégalité (XII.1) est stricte.
- Démontrer que si f est majorée et g bornée alors $\sup_{\mathtt{I}}(f+g)\geqslant \sup_{\mathtt{I}}f+\inf_{\mathtt{I}}g.$

Topologie de \mathbb{R}

La droite numérique achevée

Définition 5 (Droite achevée \mathbb{R}): L'ensemble $\mathbb{R} \cup \{-\infty; +\infty\}$, noté \mathbb{R} , est appelé droite numérique achevée.

On étend à $\overline{\mathbb{R}}$ la relation \leq , l'addition + et la multiplication × de \mathbb{R} de la façon suivante :

Prolongement de l'ordre : $\forall x \in \mathbb{R}, -\infty < x < +\infty$.

Prolongement de l'addition : $\forall x \in \mathbb{R}$,

$$\circ \ (+\infty) + x = x + (+\infty) = +\infty.$$

$$\circ \ (+\infty) + (+\infty) = +\infty.$$

$$\circ \ (-\infty) + x = x + (-\infty) = -\infty.$$

$$\circ \ (-\infty) + (-\infty) = -\infty.$$

$$\circ (-\infty) + x = x + (-\infty) = -\infty. \qquad \circ (-\infty) + (-\infty) = -\infty$$

PTSI VINCI - 2024 III. TOPOLOGIE DE $\mathbb R$

Prolongement de la multiplication:

L'ensemble $\overline{\mathbb{R}}$ devient ainsi un ensemble totalement ordonné. De plus il possède un maximum $+\infty$ et un minimum $-\infty$.

On prendra garde au fait que nous n'avons pas totalement défini de loi de composition interne dans $\overline{\mathbb{R}}$ puisque nous n'avons pas défini

•
$$0 \times (\pm \infty)$$
 • $(-\infty) + (+\infty)$ • $(-\infty) - (-\infty)$ • $\frac{\pm \infty}{\pm \infty}$

qui restent des formes indéterminées.

Proposition 5 : Toute partie de $\overline{\mathbb{R}}$ possède une borne supérieure et une borne inférieure dans $\overline{\mathbb{R}}$ (éventuellement $\pm \infty$).

En outre, si les bornes supérieure et inférieure existent dans $\mathbb R$ alors elles coïncident avec leur homologue dans $\overline{\mathbb R}$.

III.2 Intervalles de \mathbb{R}

Définition b: Soient $(a;b) \in (\overline{\mathbb{R}})^2$.

On définit les ensembles suivants :

•
$$[a;b] = \{x \in \overline{\mathbb{R}} / a \leqslant x \leqslant b\}$$

• $[a;b] = \{x \in \overline{\mathbb{R}} / a \leqslant x \leqslant b\}$
• $[a;b] = \{x \in \overline{\mathbb{R}} / a \leqslant x \leqslant b\}$
• $[a;b] = \{x \in \overline{\mathbb{R}} / a \leqslant x \leqslant b\}$

On appelle intervalle de $\overline{\mathbb{R}}$ toute partie I de $\overline{\mathbb{R}}$ vérifiant :

$$\forall x, y \in I, \ x \leqslant y \implies [x; y] \subset I.$$

Exemples 3:

Lorsque $a, b \in \mathbb{R}$, on appelle segment l'ensemble $[a; b] \subset \mathbb{R}$:

$$\begin{cases} \operatorname{Si}\ a < b, & [a\,;b] = \left\{x \in \mathbb{R}\,/\,a \leqslant x \leqslant b\right\} \\ \operatorname{Si}\ a = b, & [a\,;a] = \left\{a\right\} \\ \operatorname{Si}\ a > b, & [a\,;b] = \emptyset \end{cases}$$

 \emptyset et $\{a\}$ sont dits intervalles triviaux de \mathbb{R} . Ce sont les seuls intervalles de \mathbb{R} qui soient finis.

PTSI VINCI - 2024 III. TOPOLOGIE DE $\mathbb R$

- \blacksquare $\mathbb Z$ n'est pas un intervalle de $\mathbb R$ car 1, $2\in\mathbb Z$ mais pas $\frac{3}{2}\in\mathbb Z.$
- \mathbb{R}^* n'est pas un intervalle car $-1, 1 \in \mathbb{R}^*$ mais pas [-1; 1] qui contient $0 \notin \mathbb{R}^*$.
- \mathbb{Q} n'est pas un intervalle de \mathbb{R} (cf. corollaire (13.1)).

Théorème $\mathcal L$ (Caractérisation des intervalles de $\mathbb R$): Les intervalles de $\overline{\mathbb R}$ sont exactement les ensembles

[a;b], [a;b[,]a;b] et [a;b[] pour a et b décrivant $\overline{\mathbb{R}}$.

Les intervalles [a;b] et [a;b] avec $(a;b) \in (\overline{\mathbb{R}})^2$ sont respectivement dit fermé et ouvert.

Exemples + (Classification des intervalles de \mathbb{R}): Les intervalles de \mathbb{R} sont :

- l'ensemble vide \emptyset ,
- l'ensemble ℝ tout entier,
- les singletons $\{a\}$, avec $a \in \mathbb{R}$ un réel,
- les segments [a;b], avec $(a;b) \in \mathbb{R}^2$ tels que a < b,
- les intervalles ouverts [a; b[, avec $(a; b) \in \mathbb{R}^2$ tels que a < b,
- les intervalles semi-ouverts ou semi-fermés $[a\,;b[\text{ et }]a\,;b]$, avec $(a\,;b)\in\mathbb{R}^2$ tels que a< b,
- les demi-droites fermées $[a; +\infty[$ ou $]-\infty; a]$, avec $a \in \mathbb{R}$, définies respectivement par

$$[a\,;+\infty[\,=\,\Big\{x\in\mathbb{R}\,/\,x\geqslant a\Big\}\qquad\text{et}\qquad]-\infty\,;a]=\Big\{x\in\mathbb{R}\,/\,x\leqslant a\Big\},$$

• les demi-droites ouvertes $]a; +\infty[$ ou $]-\infty; a[$, avec $a\in\mathbb{R},$ définies respectivement par

$$]a\,;+\infty[\,=\,\Bigl\{x\in\mathbb{R}\,/\,x>a\Bigr\}\qquad\text{et}\qquad]-\infty\,;a[\,=\,\Bigl\{x\in\mathbb{R}\,/\,x< a\Bigr\},$$

III.3 Voisinages

Définition 7 (Voisinage d'un point) : Soit $a \in \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$.

On appelle voisinage de a, noté $\mathcal{V}(a)$, toute partie $V \subset \overline{\mathbb{R}}$ telle que $a \in V$ et V contient un intervalle ouvert contenant a.

$$\mathbf{A} \in \mathcal{V}(a) \iff \exists \, \varepsilon \in \mathbb{R}_+^*, \, \,]a - \varepsilon \, ; a + \varepsilon [\, \subset \mathbf{A}.$$

Exemples 5 (Exemples de voisinages) : Soit $a \in \overline{\mathbb{R}}$.

Les voisinages de a sont les intervalles de la forme :

 $\forall \varepsilon \in \mathbb{R}_{+}^{*}, |a - \varepsilon; a + \varepsilon| \text{ est un voisinage de } a.$

 $\forall A \in \mathbb{R}, [A; +\infty[$ est un voisinage de $+\infty$.

■ $\forall A \in \mathbb{R},]-\infty$; A[est un voisinage de $-\infty$.

PTSI VINCI - 2024 III. TOPOLOGIE DE $\mathbb R$

A

Exemples 6:

- [0;1] est un voisinage de [0,2]: prendre $[\varepsilon]=[0,1]$ par exemple.
- [0;1] est un voisinage de [0,98]: prendre $[\varepsilon]$ = 0,01 par exemple.
- lacksquare [0;1] n'est pas un voisinage de 1 : pour tout $\varepsilon>0$,]1 $-\varepsilon$; 1 + ε [déborde à droite.
- [0;1] est voisinage de toute réel a vérifiant 0 < a < 1: il suffit de prendre $\varepsilon = \min\{a, 1-a\}$ (la plus petite des distances de a aux bornes de [0;1]).

Théorème 7 (Lemme de séparation) :

1 Pour tout $a \in \overline{\mathbb{R}}$, l'intersection de deux voisinages de a est un voisinage de a:

$$\forall\, \mathbf{V}_1, \mathbf{V}_2 \in \mathcal{V}(a), \ \mathbf{V}_1 \cap \mathbf{V}_2 \in \mathcal{V}(a).$$

 $\overline{\mathbf{2}}$ Deux points distincts de $\overline{\mathbb{R}}$ possèdent des voisinages disjoints :

$$\forall \ (a\,;b) \in \overline{\mathbb{R}}^2, \ a \neq b \implies \exists \, \mathbf{V}_a \in \mathcal{V}(a), \exists \, \mathbf{V}_b \in \mathcal{V}(b) \ \text{ tels que } \ \mathbf{V}_a \cap \mathbf{V}_b = \varnothing.$$

Remarque : Une autre manière de voir l'assertion (2) est d'écrire : Soient a et b deux éléments $de \ \overline{\mathbb{R}}$. Si a < b alors il existe un voisinage V_a de a et un voisinage V_b de b tels que :

$$\forall x \in V_a \ et \ y \in V_b, \ x < y.$$

Ce théorème permettra, entre autre, de démontrer l'unicité de la limite d'une suite ou d'une fonction en un point de $\overline{\mathbb{R}}$.

Définition 8 (Ouvert) : Soit U une partie de R.

On dit que U est un ouvert si, et seulement si U est un voisinage de chacun de ses points :

$$\forall\, a\in\mathcal{U}, \quad \begin{array}{|l} \exists\,\mathcal{V}\in\mathcal{V}(a),\;\mathcal{V}\subset\mathcal{U}.\\ \text{ou}\\ \exists\, \varepsilon\in\mathbb{R}_+^*,\;]a-\varepsilon\,;a+\varepsilon[\,\subset\mathcal{U}. \end{array}$$

Exemples 7:

- $m{\mathbb{Z}}$ est ouvert, puisqu'il n'y a même pas de point a à tester, c'est donc tout bon.
- un ensemble de cardinal fini ne peut pas être ouvert (dès qu'il y a un point a dans U, il y a alors dans U un intervalle entier $|a \varepsilon; a + \varepsilon|$)
- N et Z ne sont pas ouverts : leurs points sont isolés.
- Tout intervalle ouvert]b; c[est ouvert!

 $\left(\text{pour } a \text{ v\'erifiant } b < a < c, \text{ on peut prendre } \varepsilon = \min\left\{\frac{a-b}{2}, \frac{c-a}{2}\right\}\right).$

- R est ouvert.
- Une intersection de deux ouverts U et V est encore un ouvert.

PTSI VINCI - 2024 IV. OPÉRATEURS RÉELS

• Une réunion d'ouverts est un ouvert. En particulier, toute réunion d'intervalles ouverts est ouverte.

Dernière petite remarque complètement hors-programme avant de quitter ce paragraphe. C'est précisément l'ensemble des ouverts de \mathbb{R} qui s'appelle une topologie. Celui-ci devient alors un espace topologique.

OPÉRATEURS RÉELS

IV.1 Valeur absolue

Définition 9 (Valeur absolue) : Soit $x \in \mathbb{R}$.

La $valeur \ absolue \ de \ x$ est le nombre réel noté |x| défini par :

$$|x| = \max(x; -x) = \begin{cases} x & \text{si } x \ge 0, \\ -x & \text{si } x < 0. \end{cases}$$

Remarque: Une partie A est bornée si, et seulement si $\exists M \in \mathbb{R}_+$ tel que

$$\forall x \in A, |x| \leq M.$$

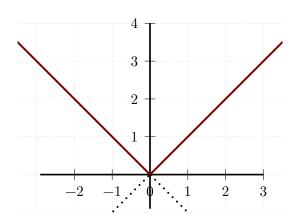


Figure XII.1 – $x \mapsto |x|$.

Méthode 2 (É quation avec la valeur absolue) : Soient $a \in \mathbb{R}$ et $r \in \mathbb{R}_+$.

$$\boxed{1} |x-a| = r \iff x-a = r \quad \text{ou} \quad x-a = -r$$

1
$$|x-a| = r \iff x-a = r \quad \text{ou} \quad x-a = -r.$$
2 $|x-a| \leqslant r \iff -r \leqslant x-a \leqslant r \quad \text{ou} \quad \begin{cases} x-a \leqslant r \\ x-a \geqslant -r \end{cases}$

Exemple 8: Écrire |x-3|-|x+2| sans valeurs absolues.

On se ramène à la définition :

$$|x-3| = \begin{cases} x-3 & \text{si } x \geqslant 3 \\ -x+3 & \text{si } x < 3 \end{cases} \quad \text{et} \quad |x+2| = \begin{cases} x+2 & \text{si } x \geqslant -2 \\ -x-2 & \text{si } x < -2 \end{cases}$$

Le mieux est de représenter la situation par un tableau :

x		-2		3		
x - 3	3-x		3-x	0	x-3	
x+2	-x-2	0	x + 2		x + 2	
x-3 - x+2	5		1-2x		-5	

$$|x-3|-|x+2| = \begin{cases} 5 & \text{si } x \in]-\infty, -2[\\ 1-2x & \text{si } x \in [-2,3[\\ -5 & \text{si } x \in [3,+\infty[\end{cases}$$

Exemple 9 : Résolution de l'équation |x-4|=2x+10 d'inconnue $x \in \mathbb{R}$.

$$|x-4|=2x+10\iff \begin{cases} x-4=2x+10 & \text{si } x\geqslant 4\\ \text{ou} & \Longleftrightarrow\\ 4-x=2x+10 & \text{si } x<4 \end{cases} \Leftrightarrow \begin{cases} x=-14 & \text{si } x\geqslant 4\\ \text{ou} & \\ x=-2 & \text{si } x<4 \end{cases}$$

Comme $-14 \notin [4, +\infty[$, il ne subsiste qu'une seule solution : $\mathscr{S} = \{-2\}$

Exemple $|\mathcal{O}|$: Résolution de l'inéquation $|x-2| < \frac{3}{x}$ d'inconnue $x \in \mathbb{R}^*$.

On remarque que l'inéquation n'a pas de solution dans \mathbb{R}_{-}^{*} car $\frac{3}{x} < 0$ pour tout x < 0 alors que $|x - 2| \ge 0$. On restreint donc notre résolution à \mathbb{R}_{+}^{*} .

$$\begin{split} |x-2| < \frac{3}{x} &\iff -\frac{3}{x} < x - 2 < \frac{3}{x} \underset{x>0}{\Longleftrightarrow} -3 < x(x-2) < 3 \\ &\iff \begin{cases} 0 < x^2 - 2x - 3 \\ \text{et} \\ (x+1)(x-3) < 0 \end{cases} &\iff \begin{cases} x \in \mathbb{R}_+^* \text{ car } \Delta = -8 < 0 \\ \text{et} \\ x \in]-1\,;\, 3[\, \cap \, \mathbb{R}_+^*] \end{cases} \end{split}$$

En conclusion, $\mathscr{S} = [0; 3[$

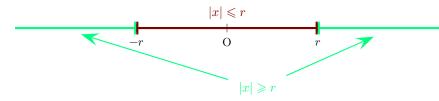


Figure XII.2 – $|x| \leqslant r$ et $|x| \geqslant r$.

Exercice 7 : Résoudre dans \mathbb{R} les équations et inéquations suivantes :

|4x - 5| = 3.

 $|4x - 5| \leq 3.$

|3| |2x-7|>1.

PTSI VINCI - 2024 IV. OPÉRATEURS RÉELS

Proposition 8 (Propriété de la valeur absolue) : Soit $x \in \mathbb{R}$.

La valeur absolue est positive. La valeur absolue est définie.

|-x| = |x|

 $\boxed{4} \quad -|x| \leqslant x \leqslant |x|.$

 $|| \sqrt{x^2} = |x||$

La valeur absolue dérive d'un produit scalaire.

La valeur absolue est paire.

En particulier,

Corollaire 8.1:

- De la définition, $|x| = |y| \iff x = y$ ou x = -y.
- De la parité, on n'oubliera pas que |x y| = |y x|.
- Du lien avec la racine carrée, on démontre aussi que

$$\forall \ (x\,;y)\in\mathbb{R}^2, \ |xy|=|x|\,|y| \qquad \text{et} \qquad \forall \ (x\,;y)\in\mathbb{R}\times\mathbb{R}^*, \ \left|\frac{x}{y}\right|=\frac{|x|}{|y|}.$$

Enfin, et de loin la propriété la plus importante :

Proposition 9 (Inégalité triangulaire) : Pour tous réels x et y, on a :

$$||x| - |y|| \le |x \pm y| \le |x| + |y|. \tag{XII.2}$$

Avec égalité si, et seulement si x et y sont de même signe.

Exercice 8: Résoudre l'équation |x+y|+y=|x-y|-y.

Représenter graphiquement l'ensemble des solutions.

Proposition 10 (Fonction valeur absolue):

- La fonction $x \mapsto |x|$ est définie et continue sur \mathbb{R} .
- La fonction $x \mapsto |x|$ est dérivable sur $]-\infty;0[$ et $]0;+\infty[$ où elle est respectivement décroissante et croissante.

ATTENTION La fonction $x \mapsto |x|$ n'est pas dérivable sur \mathbb{R} .

Définition 10 (Distance) : Soit $(x;y) \in \mathbb{R}^2$.

On appelle distance entre x et y, noté d(x; y), le réel |x - y|.

$$\forall (x:y) \in \mathbb{R}^2, d(x:y) = |x-y|.$$

IV. OPÉRATEURS RÉELS PTSI VINCI - 2024

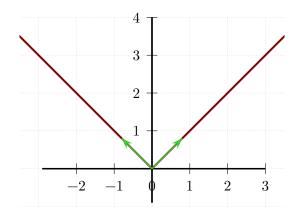


Figure XII.3 – Courbe représentative de $x \mapsto |x|$ sur \mathbb{R} .

Exercice 9 : Compléter le tableau suivant (NB : $\varepsilon > 0$) :

Valeur absolue	Distance	Inégalités	Intervalle(s)
$ x-2 \leqslant 3$			
	$d(x,-1)\geqslant 5$		
		$1 \leqslant x \leqslant 2$	
] - 5, 9[
		10 < x < 11	
$ x+1 \leqslant -1$			
	$d(x,a) \leqslant \varepsilon$		

IV.2 Partie entière

Théorème II (\mathbb{R} est archimédien) : L'ensemble \mathbb{R} est archimédien $i.e. \ \forall \ x \in \mathbb{R}_+^*, \ \forall \ y \in \mathbb{R},$ $\exists n \in \mathbb{N},$ y < nx.

Figure XII.4 – \mathbb{R} est archimédien.

Corollaire \mathbb{I} : Pour tout $x \in]1; +\infty[$ et tout $y \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $y < x^n$.

Définition/Théorème II (Partie entière) : Soit $x \in \mathbb{R}$.

Il existe un unique entier $p \in \mathbb{Z}$ tel que :

$$p \leqslant x$$

Cet entier, noté |x| ou E(x), est appelé partie entière de x:

$$\forall x \in \mathbb{R}, \quad |x| \leqslant x < |x| + 1.$$

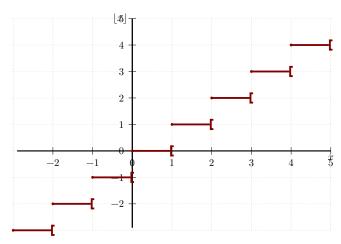


Figure XII.5 – $x \mapsto |x|$

Notamment, $\forall x \in \mathbb{R}, x - 1 < \lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1.$

Exemples
$$\|\cdot\|$$
: $\lfloor 5 \rfloor = 5$, $\lfloor -2 \rfloor = -2$, $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$, $\lfloor e \rfloor = 2$, $\lfloor -e \rfloor = -3$.

ATTENTION
$$[-7, 3] = -8 \text{ et non } -7.$$

Exemple |2|: Soient T > 0 et $x \in \mathbb{R}$. À quelle condition sur $n \in \mathbb{Z}$, a-t-on $x - nT \in [0; T]$?

$$x - nT \in [0; T] \iff 0 \leqslant x - nT < T \iff n \leqslant \frac{x}{T} < n + 1.$$

Par définition de la partie entière, l'entier $\left| \frac{x}{T} \right|$ convient.

À retenir, donc : $x - \left\lfloor \frac{x}{T} \right\rfloor T \in [0; T[$.

Exemples |3|: Soient $\varepsilon > 0$ et A > 0 fixés.

Le mot « rang » désigne ci-dessous uniquement des entiers naturels.

• À partir de quel rang est-il vrai que $\frac{1}{n} < \varepsilon$?

Cette inégalité est vraie si et seulement si $n > \frac{1}{\varepsilon}$, donc à partir du rang $\left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$ car $\left\lfloor \frac{1}{\varepsilon} \right\rfloor$ est le plus grand entier inférieur ou égal à $\frac{1}{\varepsilon}$.

- À partir de quel rang est-il vrai que $n^2 > A$? C'est vrai si et seulement si $n > \sqrt{A}$, donc à partir du rang $\left| \sqrt{A} \right| + 1$.
- À partir de quel rang est-il vrai que $\frac{1}{2^n} < \varepsilon$?

C'est vrai si et seulement si $2^n > \frac{1}{\varepsilon} \iff n > -\frac{\ln \varepsilon}{\ln 2}$, donc à partir du rang $\max \left\{0, \left\lfloor -\frac{\ln \varepsilon}{\ln 2} \right\rfloor + 1\right\}$.

PTSI VINCI - 2024 V. NOTION DE DENSITÉ

Corollaire 1.2 : Pour tout $x \in \mathbb{R}$, |x| est le plus grand entier relatif inférieur ou égal à x.

$$\forall k \in \mathbb{Z}, \forall x \in \mathbb{R}, \quad k \leqslant x \implies k \leqslant |x|.$$

Méthode 3 (Utilisation de la partie entière) : S dient $k \in \mathbb{Z}$ et $x \in \mathbb{R}$.

Pour montrer que $k\leqslant \lfloor x\rfloor$, il suffit de montrer que $k\leqslant x$.

En effet, si $k\leqslant x$ alors k est un entier inférieur à x. Il est donc plus petit que le plus grand entier inférieur à x soit $k\leqslant \lfloor x\rfloor$.

Exercice 10:

 $\boxed{1} \text{ Montrer que}: \forall x, y \in \mathbb{R}, \ x \leqslant y \Rightarrow \lfloor x \rfloor \leqslant \lfloor y \rfloor.$

Que peut-on en conclure pour la fonction partie entière?

- 2 Soit $x \in \mathbb{R}$. Calculer $\lfloor x \rfloor + \lfloor -x \rfloor$.

À-t-on $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ \lfloor x+y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$?

Montrer que : $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ |x+n| = |x| + n$.

Proposition 12 (Propriétés de la partie entière) :

- Pour tout réel x et tout entier $n \in \mathbb{Z}$, on a |x+n| = |x| + n.
 - La fonction $x \longmapsto x \lfloor x \rfloor$ est 1-périodique.
- 2 La fonction $x \mapsto \lfloor x \rfloor$ est:
 - croissante sur R,
 - constante sur tout intervalle de la forme $[n; n+1], n \in \mathbb{Z},$
 - \blacksquare continue sur $\mathbb{R} \setminus \mathbb{Z}$,
 - continue à droite mais discontinue à gauche en tout entier $n \in \mathbb{Z}$.

Exercice $\| : \text{Représenter la fonction } x \mapsto x - |x|.$

Notion de densité

Lycée Jules Garnier

 $\overline{\mathrm{V.1}}$ Place des rationnels et des irrationnels dans $\mathbb R$

Théorème 13 (\mathbb{Q} et $\mathbb{C}_{\mathbb{R}}\mathbb{Q}$ sont denses dans \mathbb{R}) :

Tout intervalle]a; b[non vide de \mathbb{R} rencontre \mathbb{Q} et $\mathbb{C}_{\mathbb{R}}\mathbb{Q}$.

Moralité, il y a ainsi toujours un rationnel entre deux irrationnels distincts et un irrationnel entre deux rationnels distincts.

CHAPITRE XII: Les nombres réels

15 |

PTSI VINCI - 2024 V. NOTION DE DENSITÉ

Corollaire 13.1: $\forall x \in \mathbb{R}, \forall \varepsilon \in \mathbb{R}_+^*$

■ $\exists q \in \mathbb{Q}$ tel que $|x - q| < \varepsilon$.

 $\exists r \in \mathbb{R} \setminus \mathbb{Q} \text{ tel que } |x-r| < \varepsilon.$

On dit que \mathbb{R} est adhérent à \mathbb{Q} et à $\mathbb{R} \setminus \mathbb{Q}$ ou que \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

En termes simples, une partie dense de \mathbb{R} est une partie de \mathbb{R} qui est un peu partout sans être forcément tout.

Corollaire 13.2:

Tout réel est la limite d'une suite de rationnels et d'une suite d'irrationnels.

Exemples I4 (Parties denses dans R):

- L'anneau $\mathbb D$ des nombres décimaux : $\mathbb D=\left\{\frac{p}{10^n},\ p\in\mathbb Z,\ n\in\mathbb N\right\}$ (cf. corollaire (13.3)).
- \blacksquare N et $\mathbb Z$ ne sont pas denses dans $\mathbb R$.

V.2 Approximations décimales

Définition/Théorème 12 (Approximation décimale d'un réel) : Pour tout $x \in \mathbb{R}$, le nombre décimal $p_n = \frac{\lfloor 10^n x \rfloor}{10^n}$ est appelé approximation décimale par défaut de x a la précision 10^{-n} et on a :

$$p_n \leqslant x < p_n + \frac{1}{10^n}.$$

Le nombre $\frac{\lfloor 10^n x \rfloor + 1}{10^n}$ est appelé approximation décimale par excès de x a la précision 10^{-n} .

Remarque : $p_0 = \lfloor x \rfloor$.

Exemple 15 (Approximation décimale de $\sqrt{2}$) :

Prenons $x = \sqrt{2}$ et posons $u_n = \frac{\lfloor 10^n x \rfloor}{10^n}$.

 $1^2 \le x^2 < 2^2 \text{ donc } 1 \le x < 2 \text{ à } 10^0 \text{ près et}$

 $u_0 = |x| = 1$ (partie entière de x).

• $(10x)^2 = 200$ et $14^2 = 196 \leqslant (10x^2) < 15^2 = 225$, donc $1, 4 \leqslant x < 1, 5$ à 10^{-1} près et

$$u_1 = \frac{\lfloor 10x \rfloor}{10} = \frac{14}{10} = 1, 4.$$

• $(100x)^2 = 20000$ et $141^2 \leqslant (100x^2) < 142^2$, donc $1,41 \leqslant x < 1,42$ à 10^{-2} près et

$$u_2 = \frac{\lfloor 100x \rfloor}{100} = \frac{141}{100} = 1,41.$$

On construit ainsi la suite $(u_n)_{n\in\mathbb{N}}$ des approximations décimale de $\sqrt{2}$ par défaut à 10^{-n} près.

PTSI VINCI - 2024 V. NOTION DE DENSITÉ

Exemple $6: 3,1415 \le \pi < 3,1416 \ \text{à } 10^{-4} \ \text{près}.$

Corollaire 13.3:

 \mathbb{D} est dense dans \mathbb{R} .

Remarque : Comme $\mathbb{D} \subset \mathbb{Q}$, c'est aussi une autre manière de montrer que \mathbb{Q} est dense dans \mathbb{R} .

Définition/Théorème 13 (Décimale) : Soit $x \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}^*$, soient $p_n = \frac{\lfloor 10^n x \rfloor}{10^n}$ et $d_n = 10^n (p_n - p_{n-1})$.

Alors d_n est un entier compris entre 0 et 1 appelé n-ième décimale de x.

Remarque : $p_n - p_{n-1} = d_n 10^{-n}$, ce qui entraı̂ne, par télescopage, que :

$$\begin{aligned} p_n &= p_0 + \sum_{k=1}^n \frac{d_k}{10^k} \\ &= p_0, d_1 d_2 \dots d_n. \end{aligned}$$

Comme la suite $(p_n)_{n\in\mathbb{N}}$ converge vers x, on écrit alors :

$$x = p_0 + \sum_{k=1}^{+\infty} \frac{d_k}{10^k} = p_0, d_1 d_2 d_3 \dots$$

Développement décimal infini du réel x.

En conclusion:

À retenir I (Propriétés de R):

- \blacksquare (\mathbb{R} , +, ×, .) est une \mathbb{R} -algèbre commutative.
- \mathbb{R} est doté d'une relation d'ordre totale \leq qui permet de définir la norme |x| d'un réel et la distance entre deux réels :

$$d(x;y) = |x - y|.$$

- La relation d'ordre permet de doter \mathbb{R} d'une famille de voisinages ouverts. \mathbb{R} possède donc une structure d'espace normé et d'espace métrique.
- R possède la propriété de la borne supérieure.
- \blacksquare R est archimédien. En particulier, $\forall x \mathbb{R}, |x|$ est le plus grand entier inférieur à x:

$$|x| \leqslant x < |x| + 1.$$

- \blacksquare \mathbb{R} est indénombrable.
- \blacksquare $\mathbb R$ contient $\mathbb Q$ qui y est dense. De même que son complémentaire et l'ensemble $\mathbb D$ des décimaux.

En particulier, tout réel peut être vu comme la limite d'une suite de rationnels, d'irrationnels ou de décimaux.