Feuille d'exercices n° 12 Nombres réels

Nombres réels

CALCULS DANS ℝ

Exercice I (Vrai ou Faux?):

$$4 \forall a, b \in \mathbb{R}_+, (a \leqslant b \implies \sqrt{a} \leqslant \sqrt{b})$$

Exercice 2 : Démontrer les inégalités suivantes :

2
$$\forall x, y \in]-1, 1[, -1 < \frac{x+y}{1+xy} < 1.$$

$$\exists \forall x, y \in \mathbb{R}_+, \quad \sqrt{x+y} \leqslant \sqrt{x} + \sqrt{y}.$$

$$4 \forall x, y \in [0; 1[\text{ tels que } x \leqslant y, \quad \frac{x}{1-x} \leqslant \frac{y}{1-y}.$$

Correction:

1 Etudier la fonction $x \longmapsto 4x^3 - 3x$ sur $[-1\,;1]$.

$$\boxed{\textbf{2}} \ \ 1 + xy - (x+y) = (1-x)(1-y) > 0 \text{ s.i. } x,y < 1 \text{ et } 1 + xy + (x+y) = (1+x)(1+y) > 0 \text{ s.i. } x,y > -1.$$

Exercice 3: Le maximum de deux nombres x, y (c'est-à-dire le plus grand des deux) est noté $\max(x, y)$. De même on notera $\min(x, y)$ le plus petit des deux nombres x, y.

Démontrer que :

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$
 et $\min(x,y) = \frac{x+y-|x-y|}{2}$.

Trouver une formule pour $\max(x, y, z)$.

 ${f Correction}$: Explicitons la formule pour $\max(x,y)$

$$\text{ Gi }x\geqslant y \text{ alors }|x-y|=x-y \text{ donc }\frac{1}{2}(x+y+|x-y|)=\frac{1}{2}(x+y+x-y)=x.$$

De même si
$$x\leqslant y$$
, alors $|x-y|=-x+y$ donc $\frac{1}{2}(x+y+|x-y|)=\frac{1}{2}(x+y-x+y)=y$.

Pour trois éléments, nous avons $\max(x,y,z) = \max\big(\max(x,y),z\big)$, donc d'après les formules pour deux éléments :

$$\begin{split} \max(x,y,z) &= \frac{\max(x,y) + z + |\max(x,y) - z|}{2} \\ &= \frac{\frac{1}{2}(x+y+|x-y|) + z + \left|\frac{1}{2}(x+y+|x-y|) - z\right|}{2}. \end{split}$$

Exercice +: Résoudre dans \mathbb{R} les inéquations suivantes :

Feuille d'exercices nº12 Nombres réels

$$\frac{1}{x} < \frac{1}{x+1}.$$

$$\frac{1}{x} < \frac{1}{x+1}.$$

$$\frac{3}{\sqrt{x} - \sqrt{2-x}} \geqslant 1.$$

$$\boxed{3} \quad \sqrt{x} - \sqrt{2 - x} \geqslant 1$$

$$\boxed{4} \sqrt{x} + \sqrt{2-x} \geqslant \frac{3}{2}.$$

$$(3x+1)^2 \leqslant 2(3x+1)(x+1).$$

$$\frac{x-1}{x+3} \geqslant 2.$$

$$\boxed{7} \quad \sqrt{3x^2 - 11x + 21} < 2x - 3$$

Exercice 5 : Soient x et y deux réels tels que $0 < x \le y$. On pose $m = \frac{x+y}{2}$ (moyenne arithmétique), $g = \sqrt{xy}$ (moyenne géométrique) et $\frac{1}{h} = \frac{1}{2}(\frac{1}{x} + \frac{1}{y})$ (moyenne harmonique). Montrer que $x \leqslant h \leqslant g \leqslant m \leqslant y$.

Correction: Soient x et y deux réels tels que $0 < x \leqslant y$.

On a déjà
$$x=\frac{x+x}{2}\leqslant \frac{x+y}{2}=m\leqslant \frac{y+y}{2}=y$$
 et donc $x\leqslant m\leqslant y$. (on peut aussi écrire : $m-x=\frac{x+y}{2}-x=\frac{y-x}{2}\geqslant 0$).

2 On a ensuite $x=\sqrt{x.x}\leqslant \sqrt{xy}=g\leqslant \sqrt{y.y}=y$ et donc $x\leqslant g\leqslant y.y.y$

$$\boxed{\textbf{3}} \quad m-g=\frac{x+y}{2}-\sqrt{xy}=\frac{1}{2}((\sqrt{x})^2-2\sqrt{xy}+(\sqrt{y})^2)=\frac{1}{2}(\sqrt{y}-\sqrt{x})^2\geqslant 0 \text{ et donc, } x\leqslant g\leqslant m\leqslant y.$$

4 D'après 1), la moyenne arithmétique de $\frac{1}{x}$ et $\frac{1}{y}$ est comprise entre $\frac{1}{x}$ et $\frac{1}{y}$, ce qui fournit $\frac{1}{y} \leqslant \frac{1}{h} \leqslant \frac{1}{x}$.

oxtless D'après 3), la moyenne géométrique des deux réels $rac{1}{x}$ et $rac{1}{y}$ est inférieure ou égale à leur moyenne arithmétique. Ceci fournit $\sqrt{\frac{1}{x}.\frac{1}{y}}\leqslant \frac{1}{2}(\frac{1}{x}+\frac{1}{y})$ ou encore $\frac{1}{g}\leqslant \frac{1}{h}$ et finalement

$$x\leqslant h\leqslant g\leqslant m\leqslant y \text{ où }\frac{1}{h}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right),\ g=\sqrt{xy} \text{ et } m=\frac{x+y}{2}.$$

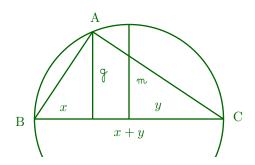
Remarque : On a $h=\frac{2xy}{x+y}$, mais cette expression ne permet pas de comprendre que $\frac{1}{h}$ est la moyenne arithmétique de $\frac{1}{r}$ et $\frac{1}{r}$

On peut visualiser l'inégalité entre moyenne arithmétique et géométrique.

 ${
m Fi}$ ${
m (ABC)}$ est un triangle rectangle en ${
m A}$ et ${
m A}'$ est le pied de la hauteur issue de ${
m A}$, on sait que ${
m AA'^2=A'B.A'C.}$ On se sert de cette remarque pour construire g et la comparer graphiquement à m.

On accole deux segments de longueurs respectives x et y. On construit alors un triangle rectangle d'hypoténuse ce segment (de langueur x+y) noté $[\mathrm{BC}]$, tel que le traisième sommet A ait une projection orthogonale A'sur (BC) vérifiant BA' = x et CA' = y.

Feuille d'exercices n° 12 Nombres réels



La moyenne arithmétique de x et y est $m=\frac{x+y}{2}$, le rayon du cercle, et la moyenne géométrique de x et yest $g = \sqrt{xy} = \sqrt{{
m A'B.A'C}} = {
m AA'}$, la hauteur issue de A du triangle (ABC).

Exercice $blue : Résoudre dans <math>\mathbb{R}$ les équations et inéquations suivantes :

$$|2x-1| = |5x+1|.$$

$$|x^2 + x - 3| > |x|$$

7
$$|x+2|+|2x-1|+|x-3|=8$$
.

$$|2x-1| \le |x+2|$$
.

$$|4x^2 - 7|x| + 3 = 0$$

$$|x^2 - x + 5| = |x - 1|.$$

$$|x+3| \leqslant |x^2 - 3|.$$

$$|x^2 - x + 5| = |x - 1|.$$

$$|x + 3| \le |x^2 - 3|.$$

$$|x^2 - x + 5| = |-x^2 + 3x + 2|.$$

Exercice 7: On définit la relation \leq sur \mathbb{R} par :

$$x \preccurlyeq y \iff |x| \leqslant |y|$$

- 1 La relation \leq est-elle réflexive? antisymétrique? transitive?
- Deux réels x et y sont-ils toujours comparables pour \leq ?

Exercice 8:

- Soient $x \in \mathbb{R}$ tel que $|x-2| \leqslant 1$ et $y \in \mathbb{R}$ tel que $-5 \leqslant y \leqslant -4$. Encadrer x + y, x - y, xy et $\frac{x}{y}$.
- Soit $(x;y) \in]-1;1[^2$. Montrer que $\left|\frac{x+y}{1+xy}\right| < 1$.

Exercice 9: Soient x et y deux réels vérifiant $\left|x-\frac{1}{2}\right| \leqslant \frac{1}{4}$ et $|y+1| \leqslant \frac{1}{2}$.

Montrer que $\left|\frac{x}{u} + \frac{5}{6}\right| \leqslant \frac{2}{3}$.

Exercise $O: A\text{-t-on}: \forall x \in \mathbb{R}, |e^x| \leq e^{|x|}$?

Exercice II (Inégalités de Cauchy-Schwarz et de Minkowski) : Soient $a_1,...,a_n,b_1,...,b_n$ des nombres réels.

$$\left|\sum_{k=1}^n a_k b_k\right| \leqslant \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_k^2} \hspace{1cm} \text{(inégalité de Cauchy-Schwarz)}$$

2 En déduire :

$$\sqrt{\sum_{k=1}^{n}(a_k+b_k)^2}\leqslant\sqrt{\sum_{k=1}^{n}a_k^2}+\sqrt{\sum_{k=1}^{n}b_k^2} \qquad \qquad \text{(inégalité de Minkowski)}$$

Correction:

 $\fbox{1}$ \emph{I}_{i} les $\emph{b}_{\emph{k}}$ sont tous nuls, l'inégalité est claire.

Sinon, pour x réel, posons

$$P(x) = \sum_{k=1}^{n} (a_k + xb_k)^2 = \left(\sum_{k=1}^{n} b_k^2\right) x^2 + 2\left(\sum_{k=1}^{n} a_k b_k\right) x + \sum_{k=1}^{n} a_k^2$$

P est un trinôme du second degré de signe constant sur $\mathbb{R}.$ Son discriminant réduit est donc négatif ou nul ce qui fournit :

$$0\geqslant \Delta'=\left(\sum_{k=1}^n a_k b_k\right)^2-\left(\sum_{k=1}^n a_k^2\right)\left(\sum_{k=1}^n b_k^2\right),$$

ou encore $\left|\sum_{k=1}^n a_k b_k\right| \leqslant \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_{k'}^2}$ qui est l'inégalité de Cauchy-Ichwarz.

2

$$\begin{split} \sum_{k=1}^n (a_k + b_k)^2 &= \sum_{k=1}^n a_k^2 + 2 \sum_{k=1}^n a_k b_k + \sum_{k=1}^n b_k^2 \leqslant \sum_{k=1}^n a_k^2 + 2 \left| \sum_{k=1}^n a_k b_k \right| + \sum_{k=1}^n b_k^2 \\ &\leqslant \sum_{k=1}^n a_k^2 + 2 \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_k^2} + \sum_{k=1}^n b_k^2 \quad \text{(Cauchy-Schwarz)} \\ &= \left(\sqrt{\sum_{k=1}^n a_k^2} + \sqrt{\sum_{k=1}^n b_k^2} \right)^2 \end{split}$$

et donc,
$$\sqrt{\sum_{k=1}^n (a_k+b_k)^2} \leqslant \sqrt{\sum_{k=1}^n a_k^2} + \sqrt{\sum_{k=1}^n b_{k'}^2}$$
 qui est l'inégalité de Minkowski.

Commentaires: L'inégalité de Cauchy-Schwarz affirme que le produit scalaire de deux vecteurs est inférieur ou égal au produit de leurs normes et l'inégalité de Minhowski est l'inégalité triangulaire.

BORNE SUPÉRIEURE

Exercice |2 : Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

 $\boxed{1} \quad [0\,;1]\cap \mathbb{Q}$

3 N

 $[2] \]0;1[\cap \mathbb{Q}$

 $\{ (-1)^n + \frac{1}{n^2} / n \in \mathbb{N}^* \}$

Correction:

- $[0,1]\cap\mathbb{Q}$. Les majorants : $[1,+\infty[$. Les minorants : $]-\infty;0]$. La borne supérieure : 1. La borne inférieure : 0. Le plus grand élément : 1. Le plus petit élément 0.
- [2] $]0,1[\cap \mathbb{Q}.$ Les majorants : $[1,+\infty[$. Les minorants : $]-\infty;0]$. La borne supérieure : 1. La borne inférieure : 0. Il n'existe pas de plus grand élément ni de plus petit élément.
- N. Pas de majorants, pas de borne supérieure, ni de plus grand élément. Les minorants : $]-\infty$; 0]. La borne inférieure : 0. Le plus petit élément : 0.

 $\left\{ (-1)^n + \frac{1}{n^2} \mid n \in \mathbb{N}^* \right\}. \text{ Les majorants} : \left[\frac{5}{4}; +\infty \right[\text{. Les minorants} :] -\infty; -1]. \text{ La borne supérieure} : \\ \frac{5}{4}. \text{ La borne inférieure} : -1. \text{ Le plus grand élément} : \frac{5}{4}. \text{ Pas de plus petit élément}.$

Exercice 3: Déterminer la borne supérieure et inférieure (si elles existent) de : $A = \{u_n \mid n \in \mathbb{N}\}$ avec $u_n = 2^n$ si n est pair et $u_n = 2^{-n}$ sinon.

Correction: $(u_{2k})_k$ tend vers $+\infty$ et donc A ne possède pas de majorant, ainsi A n'a pas de borne supérieure (cependant certains écrivent alors $\sup A = +\infty$).

D'autre part toutes les valeurs de (u_n) sont positives et $(u_{2k+1})_k$ tend vers 0, donc $\inf A=0$.

Exercice H: Soient A et B deux parties majorées non vides de R.

Montrer que A + B admet une borne supérieure, et que $\sup(A + B) = \sup(A) + \sup(B)$.

2 On note $A - B = \{a - b, (a; b) \in A \times B\}.$

Montrer que A-B admet une borne supérieure, et que $\sup(A-B)=\sup(A)+\inf(B)$.

3 Soit A une partie non vide et bornée de \mathbb{R} .

Montrer que sup $\{|x-y|, (x,y) \in A^2\} = \sup(A) - \inf(A)$.

Correction:

Comme A et B sont non vides, A+B est non vide. Four tout $x\in A+B$, il existe $(a\,;b)\in A\times B$ tels que x=a+b.

Or, $a \leqslant \sup(A)$ et $b \leqslant \sup(B)$ donc $x \leqslant \sup(A) + \sup(B)$.

Finsi A+B est majorée par $\sup(A)+\sup(B)$, donc admet une borne supérieure.

En particulier, de la définition de la borne supérieure de $\mathrm{A}+\mathrm{B}$, on a :

$$\sup(A + B) \leqslant \sup(A) + \sup(B). \tag{XI.1}$$

Montrons que $\sup\left(A\right)+\sup\left(B\right)$ est le plus petit des majorants de A+B.

Soit M un majorant de A+B, on a donc pour tout $a\in A$ et $b\in B$, $a+b\leqslant M$.

Finsi $a \leqslant \mathbf{M} - b$, et ceci pour tout $a \in \mathbf{A}$.

 $\mathbf{M}-b$ est donc un majorant de \mathbf{A} d'où $\sup(\mathbf{A})\leqslant \mathbf{M}-b$ par définition de $\sup{(\mathbf{A})}.$

D'où, $b\leqslant \mathbf{M}-\sup(\mathbf{A})$ et ce, pour tout $b\in \mathbf{B}.$

Par définition de la borne supérieure de B cette fois, on a encore $\sup(B)\leqslant M-\sup(A).$

Finalement $\sup(A)+\sup(B)\leqslant M$ i.e. $\sup(A)+\sup(B)$ est le plus petit des majorants de A+B.

Donc, $\sup(A+B) = \sup(A) + \sup(B)$.

 $\textbf{Remarque}: \\ \textbf{Une autre méthode est de montrer directement } l'inégalité contraire de (XI.1).$

Soient $a \in A$ et $b \in B$. Flors $a+b \leqslant \sup(A+B) \iff a \leqslant \sup(A+B)-b$ qui est donc un majorant de A.

Par définition de la borne supérieure, $\sup(\mathbf{A})\leqslant \sup(\mathbf{A}+\mathbf{B})-b.$

Mais alors $b\leqslant \sup(\mathbf{A}+\mathbf{B})-\sup(\mathbf{A})$ sup $\sup(\mathbf{B})\leqslant \sup(\mathbf{A}+\mathbf{B})-\sup(\mathbf{A}).$

Donc $\sup(A) + \sup(B) \leqslant \sup(A+B)$ et l'égalité.

2 Nême raisonnement.

$$\boxed{\bf 3} \ \ \, \text{Posons B} = \{|y-x|, \ (x,y) \in \mathbf{A}^2\}.$$

A est une partie non vide et bornée de \mathbb{R} , et donc $m=\inf(A)$ et $M=\sup(A)$ existent dans \mathbb{R} .

Four $(x\,;y)\in \mathbf{A}^2$, on a $m\leqslant x\leqslant \mathbf{M}$ et $m\leqslant y\mathbf{M}$, et donc $y-x\leqslant \mathbf{M}-m$ et $x-y\leqslant \mathbf{M}-m$ ou encore $|y-x|\leqslant \mathbf{M}-m$.

Par suite, B est une partie non vide et majorée de $\mathbb{R}.$ B admet donc une borne supérieure.

$$\text{ Poit } \varepsilon>0. \text{ \mathbb{T} existe } (x_0\,;y_0)\in \mathbf{A}^2 \text{ tel que } x_0<\inf(\mathbf{A})+\frac{\varepsilon}{2} \text{ et } y_0>\sup(\mathbf{A})-\frac{\varepsilon}{2}.$$

Ces deux éléments x_0 et y_0 vérifient,

$$|y_0-x_0|\geqslant y_0-x_0>\left(\sup\left(\mathbf{A}\right)-\frac{\varepsilon}{2}\right)-\left(\inf\left(\mathbf{A}\right)+\frac{\varepsilon}{2}\right)=\sup\left(\mathbf{A}\right)-\inf\left(\mathbf{A}\right)-\varepsilon.$$

En résumé,

 $\textcircled{ } \forall \, (x,y) \in \mathbf{A}^2, \, |y-x| \leqslant \sup \left(\mathbf{A}\right) - \inf \mathbf{A} \text{ et }$

Donc, sup $\mathbf{B} = \sup (\mathbf{A}) - \inf \mathbf{A}$ i.e.

$$\sup\left\{ \left|y-x\right|,\;\left(x,y\right)\in\mathcal{A}^{2}\right\} =\sup\left(\mathcal{A}\right)-\inf\left(\mathcal{A}\right).$$

Exercice 5: Soit $f:[0;1] \mapsto [0;1]$ une application croissante.

On pose $A = \{x \in [0; 1], f(x) \ge x\}.$

- 1 Montrer que A admet une borne supérieure m.
- Montrer que m est un point fixe de f i.e. f(m) = m.

Correction:

 $\boxed{\mathbf{1}}$ A est une partie non-vide (car elle contient 0), et majorée (par 1) de \mathbb{R} .

Elle admet donc une borne supérieure m.

- $oxed{2}$ On va raisonner par l'absurde pour démontrer que f(m)=m.
 - $\begin{tabular}{ll} \begin{tabular}{ll} \begin$

Mais alors $f(c)\geqslant c>f(m)$ alors que $c\leqslant b.$ Ceci contredit que f est croissante.

I fi f(m) > m, comme f est croissante, on a $f(f(m)) \geqslant f(m)$, et donc $f(m) \in I$, ce qui est impossible puisque f(m) est strictement supérieur à la borne supérieure de A.

III PARTIE ENTIÈRE

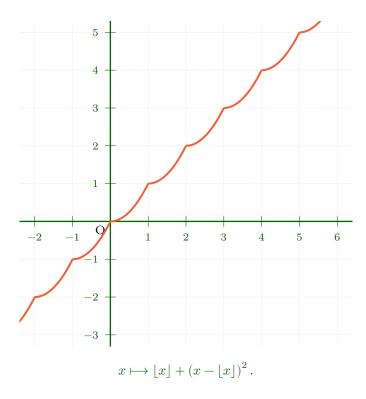
Exercice 6: Soient
$$f: \mathbb{R} \longmapsto \mathbb{R}$$
 et $g: \mathbb{R} \longmapsto \mathbb{R}$ $x \mapsto [2x]$

A-t-on $f \equiv g$?

Exercise Π : Représenter la fonction $x \mapsto \lfloor x \rfloor + (x - \lfloor x \rfloor)^2$.

Feuille d'exercices n° 12 Nombres réels

Correction:



Exercice 8: Soit n un entier naturel.

1 Montrer que le nombre de chiffres $\kappa(n)$ de n dans son écriture décimale est :

$$\kappa(n) = \lfloor \log n \rfloor + 1$$

2 Quel est le nombre de chiffres de n dans son écriture en base b?

Correction:

1 Un nombre $n\geqslant 1$ est nécessairement compris entre deux puissances de 10 i.e.

$$\exists\, p \in \mathbb{N}^*, \; / \; 10^p \leqslant n < 10^{p+1} \quad \text{ i.e. } n \text{ possède } p+1 \text{ diffres.}$$

Or, comme la fonction \log est une fonction croissante, on a aussi :

$$\begin{array}{ll} \log 10^p & \leqslant \log n < & \log 10^{p+1} \\ p & \leqslant \log n < & p+1. \end{array}$$

On a donc : $\lfloor \log N \rfloor = p$ où E est la fonction partie entière.

Conclusion : le nombre de chiffres de n est donc : $\lfloor \log N \rfloor + 1.$

Far exemple, comme $\log{(2021^{2022})} \simeq 6683, 9.$ Le nombre 2021^{2022} s'écrit avec 6 684 chiffres!

2 Praisonnement identique avec \log_b .

Exercice 19: Montrer que $\forall x \in \mathbb{R}, (x \in \mathbb{Z}) \iff (\forall n \in \mathbb{N}, [nx] = n[x]).$

Correction:

 $\Rightarrow :$ Supposons que $x \in \mathbb{Z}.$ Hors $\lfloor x \rfloor = x.$

On a aussi $\forall\,n\in\mathbb{N},\quad nx\in\mathbb{Z}$ donc $\forall\,n\in\mathbb{N},\quad \lfloor nx\rfloor=nx=n\,\lfloor x\rfloor.$

 $\Leftarrow : \text{Montrons la contraposée} : \text{si } x \notin \mathbb{Z} \text{ alors } \exists n \in \mathbb{N}, \quad \lfloor nx \rfloor \neq n \, \lfloor x \rfloor.$

Notons
$$x = |x| + \epsilon$$
 avec $\epsilon \in]0,1[$.

 $\mathbb R$ étant archimédien, il existe un $n_0\in\mathbb N$ tel que $n_0\epsilon>1.$

On a done
$$\lfloor n_0 x \rfloor = \lfloor n_0 \lfloor x \rfloor + n_0 \epsilon \rfloor = n_0 \lfloor x \rfloor + \lfloor n_0 \epsilon \rfloor \geqslant n_0 \lfloor x \rfloor + 1$$
. Done $\lfloor n_0 x \rfloor \neq n_0 \lfloor x \rfloor$. CODD

Exercice 20: Montrer que $\forall x, y \in \mathbb{R}$, $|x| + |x + y| + |y| \le |2x| + |2y|$.

Le membre de gauche $\lfloor x'+y' \rfloor$ vaut 0 ou 1. Le membre de droite $\lfloor 2x' \rfloor + \lfloor 2y' \rfloor$ vaut 0 , 1 ou 2.

Ia dernière inégalité ne serait pas vérifiée uniquement si
$$\begin{cases} \lfloor x'+y'\rfloor = 1 \\ \lfloor 2x'\rfloor + \lfloor 2y'\rfloor = 0 \end{cases}$$

Or
$$\lfloor 2x' \rfloor + \lfloor 2y' \rfloor = 0$$
 implique $0 \leqslant x' < \frac{1}{2}$ et $0 \leqslant y' < \frac{1}{2}$.

Et alors,
$$0\leqslant x'+y'<1$$
 et c'est absurde puisque $\lfloor x'+y'\rfloor=1$.

Exercice 21: Résoudre l'équation

$$\forall x \in \mathbb{R}, \quad |2x+3| = |x+2|$$

Correction:

Analyse: Poit x une solution. Flors en posant $n = \lfloor 2x+3 \rfloor = \lfloor x+2 \rfloor$, on a $\begin{cases} n \leqslant 2x+3 < n+1 \\ n \leqslant x+2 < n+1 \end{cases}$

D'où
$$2x+3 < n+1 \leqslant x+3$$
, i.e. $x < 0$.

Et
$$x+2 < n+1 \leqslant 2x+4$$
 donc $-2 < x$. On en déduit que $\mathcal{S} \subset]-2,0[$.

Synthèse: $-\mathcal{G}(x \in]-2,-1[$ on a $x+2 \in]0,1[$ donc [x+2]=0.

$$\lfloor 2x+3\rfloor = \lfloor x+2\rfloor \iff \lfloor 2x+3\rfloor = 0 \iff 0 \leqslant 2x+3 < 1 \iff -\frac{3}{2} \leqslant x < -1.$$

$$- \text{ \mathcal{G} is $x \in]-1,0[$ on a $x+2 \in]1,2[$ donc $|x+2|=1$.}$$

- Ji
$$x \in]-1,0[$$
, on a $x+2 \in]1,2[$ donc $[x+2]=1.$

$$\lfloor 2x+3 \rfloor = \lfloor x+2 \rfloor \iff \lfloor 2x+3 \rfloor = 1 \iff 1 \leqslant 2x+3 < 2 \iff -1 \leqslant x < -\frac{1}{2}.$$

$$\mathcal{S} = \left[-\frac{3}{2}, -\frac{1}{2} \right].$$

Exercice 22:

- $\boxed{ \ \, } \quad \text{Montrer que } \forall \, n \in \mathbb{N}^*, \, \frac{1}{\sqrt{n+1}} < 2 \left(\sqrt{n+1} \sqrt{n} \right) < \frac{1}{\sqrt{n}}.$
- 2 En déduire la partie entière de $A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{10000}}$.

Exercice 23 : Calculer pour $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^{n^2-1} \left\lfloor \sqrt{k} \right\rfloor$.

Correction: L'idée est de former des paquets de termes consécutifs identiques.

En effet, lorsque l'entier k parcourt l'ensemble $\left[\left[j^2; \left(j+1 \right)^2 -1 \right] \right]$, l'expression $\left[\sqrt{k} \right]$ prend constamment la valeur j.

 ${\mathbb R}$ est donc naturel de regrouper les termes correspondants pour obtenir :

$$\mathbf{S}_n = \sum_{j=1}^{n-1} \left(\sum_{k=j^2}^{(j+1)^2-1} j \right).$$

Mais la somme interne comparte $(j+1)^2-1-j^2+1=2j+1$ termes, tous égaux à j, et donc :

$$\begin{split} \mathbf{S}_n &= \sum_{j=1}^{n-1} j \left(2j + 1 \right) = 2 \sum_{j=1}^{n-1} j^2 + \sum_{j=1}^{n-1} j \\ &= \frac{(n-1)n(2n-1)}{3} + \frac{(n-1)n}{2} \\ &= \frac{n(n-1)(4n-1)}{6}. \end{split}$$

Exercice 24 : Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Montrer que :

$$\left\lfloor \frac{a}{b} \right\rfloor + \left\lfloor \frac{a+1}{b} \right\rfloor + \dots + \left\lfloor \frac{a+b-1}{b} \right\rfloor = a.$$

 $\textbf{Correction} \ : \ \ a = bq + r \implies \sum = \underbrace{q + q + \dots + q}_{b - r} + \underbrace{(q + 1) + \dots + (q + 1)}_{r} = bq + r = a.$