Nombres réels

Une seule réponse exacte par question.

- \square La partie entière de $-\pi$ vaut :
 - (a) \Box -0, 1415
- \bigcirc 0,8584
- \Box \Box -3
- \bigcirc \square -4

- 2 Le réel ln 8 vaut
 - \bigcirc \square $(\ln 2)^3$
- **(b)** □ 4 ln 2
- $\Box \ln 2 + \ln 3$
- \bigcirc \square $3 \ln 2$
- - \bigcirc $\square \frac{\sqrt{n}}{2n}$
- $\bigcirc \square \frac{\sqrt{n+1}}{2^n} \qquad \bigcirc \square \frac{\sqrt{n}}{2^{n+1}} \qquad \bigcirc \square \frac{\sqrt{n+1}}{2^{n+1}}$

- 4 Pour tout entier $n \ge 1$, le réel $\left(1 + \frac{1}{n}\right)^n$ est égal à :
 - \bigcirc $\square \exp \left(n \ln \left(1 + \frac{1}{n} \right) \right)$

 \bigcirc \square $\exp\left(\ln\left(n+1\right)\right)$

- $\boxed{\mbox{5}}$ Si x est un nombre réel, $\sqrt[3]{x^2}$ est égal à
 - \bigcirc $\square x^{3/2}$
- **(b)** \Box |x|^{3/2}
- $\Box x^{2/3}$
- (d) $\Box |x|^{2/3}$

- 6 Si x est un réel tel que $|2-x| \leq 1$, alors
 - $|x| \leq 1$
- \Box $|x| \leq 3$
- \bigcirc $\square |x| \geqslant -1$
- $\Box |x| \geqslant 3$
- Soient a, b, c, d des réels strictement positifs avec a < b et c < d. Alors

- Soit x un réel. Parmi les conditions suivantes, laquelle est suffisante pour affirmer que x < -1?
 - (a) $\Box x^2 < 1$

 $\Box |x+2| < 1$

(b) \Box |x + 2| > 1

- (a) $\Box |x+1| < 2$
- 9 Si x, y sont deux réels tels que $|x-5| \le 1$ et $|y-1| \le 1$, alors on a
 - \bigcirc \square $2 \leqslant |x-y| \leqslant 6$

 \bigcirc \square $4 \leqslant |x - y| \leqslant 6$

 \bigcirc \square $0 \leqslant |x-y| \leqslant 2$

 \bigcirc \square $4 \leq |x-y| \leq 8$

- Quelle fonction vérifie f(x+y) = f(x)f(y) pour tous x et y dans son domaine de définition?
 - \Box $f(x) = \ln(2x)$

 \bigcirc \Box $f(x) = e^{2x}$

- $\Box f(x) = \frac{1}{2}e^x$
- III Si a et b sont des réels strictement positifs, $a^{\ln b}$ est égal à
 - \bigcirc \square $e^{\ln(ab)}$
- $\Box b^{\ln a}$
- \Box $\ln (a^b)$
- (1) \square $(\ln a)^b$
- Parmi les ensembles suivants, lequel admet une borne supérieure?
 - \bigcirc $\square \{x \in \mathbb{R}, x < x + 1\}$

b \Box { $x \in \mathbb{R}_+, x < -1$ }

- Quelle est la borne supérieure de l'intervalle [0, 1]?
 - (a) □ 1⁻

(b) □ 1

- \bigcirc \square $[1,+\infty[$
- □ le plus grand réel strictement inférieur à 1
- Quelle est la borne supérieure de $\{x \in [-2, 2], x^2 < 2\}$?
 - (a) \Box 4
- \Box \Box $\sqrt{2}$
- \Box $-\sqrt{2}$
- **d** □ 0
- Quelle est la borne inférieure de $\{x \in [-1,3], x^2 < 4\}$?
 - \bigcirc \square -2
- (b) □ −1
- **©** □ 2
- \bigcirc \square $-\sqrt{2}$
- If $\mathbb{R} \to \mathbb{R}$ est une fonction décroissante, la quantité sup $f(x^2)$ vaut $x \in [-1,1]$
 - \bigcirc \square f(0)

 \Box f(-1)

(b) □ *f*(1)

- \square $\max(f(-1), f(1))$
- Pour x réel, ||x|+x| est toujours égal à
 - \bigcirc $\square \mid 2x \mid$
- $\Box 2|x|$
- $\Box |x^2|$
- $\Box x + |x|$

- 18 Si x est un réel de partie entière n, on a
 - \bigcirc $\square x 1 < n < x$

 \bigcirc $\square x - 1 < n \leq x$

 \square $\square x - 1 \leq n < x$

- $\square x 1 \le n \le x$
- 19 Soit A = |x| + |y|, B = |x + y| et C = x + y. On a
 - (a) □ A ≤ B ≤ C

□ B ≤ C ≤ A

(b) □ B ≤ A ≤ C

(d) □ C ≤ B ≤ A

2