Calcul matriciel

Une seule réponse exacte par question.

- Soient A et B deux matrices de tailles respectives 4×3 et 3×2 . Alors le produit AB
 - \bigcirc \square est de taille 3×3

 \bigcirc \square est de taille 12×6

 \bigcirc \square est de taille 4×2

- n'a pas de sens
- Combien vaut la matrice $(E_{12} + E_{21})^2$?
 - \square 2E₁₁
- (b) □ 2E₂₂
- \bigcirc \square $E_{12} + E_{21}$ \bigcirc \square $E_{11} + E_{22}$
- $\begin{tabular}{ll} \bf 3 & {\rm Soit} \ {\rm M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \\ \end{tabular} . \ {\rm La \ matrice} \ ({\rm M} {\rm I}_3)({\rm M} 2{\rm I}_3)({\rm M} 3{\rm I}_3) \ {\rm vaut} \ : \ \ \\ \end{tabular}$

- [4] Laquelle des matrices suivantes vérifie $M^2 = -I_2$?

- La matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ commute avec la matrice $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ si et seulement si
 - (a) \square A est triangulaire supérieure

 \bigcirc \square c=0 et a=d

- 6 Laquelle des hypothèses suivantes n'implique pas que la matrice carrée A soit aussi diagonale?
 - \bigcirc \square A^{\top} est diagonale

 \bigcirc \square A^2 est diagonale

 \bigcirc \square A – I est diagonale

- (a) □ 2A est diagonale
- Si A est une matrice carrée, $(A^{\top})A$ est toujours
 - triangulaire supérieure
- symétrique

□ diagonale

antisymétrique

- 8 Si A, B sont deux matrices carrées inversibles de $\mathbb{M}_n(\mathbb{R})$, l'inverse de $(AB)^{\top}$ est toujours

QCM nº2

- \bigcirc \square $B^{-1}A^{-1}$
- $\Box (B^{-1})^{\top} (A^{-1})^{\top}$
- (d) $\Box A^{-1}B^{-1}$
- [9] Si $M \in \mathbb{M}_n(\mathbb{R})$ est une matrice triangulaire supérieure inversible, son inverse est
 - (a) \(\overline{\pi} \) triangulaire supérieure
- □ symétrique
- (b) □ triangulaire inférieure
- ⓐ une telle matrice n'est jamais inversible
- L'inverse de $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ est

 $\bigcirc \boxtimes \begin{pmatrix} 1 & -2/3 \\ 0 & 1/3 \end{pmatrix}$

- 11 On calcule tous les produits $E_{12}E_{ij}$. Combien de ces produits sont nuls?
 - \bigcirc \square n

- \square n^2-n
- \bigcirc \square n^3

- \bigcirc aucun car E_{12} est non nulle
- 12 Si M est une matrice carrée telle que $M^{\top} = 2M$, alors
 - (a) \square M est une matrice diagonale
- ✓ M est nulle
- **(b)** □ M est une matrice symétrique
- □ les coefficients diagonaux de M sont nuls
- 13 Combien de matrices E_{ij} commutent avec E_{11} ?
 - (a) \Box 1
- **b** \Box $(n-1)^2$
- \bigcirc \square $(n-1)^2-1$ \bigcirc \bigcirc \bigcirc n^2

2