Matrices et Limites

Exercice | : Calculer les limites suivantes, par valeurs inférieures et supérieures à défaut :

$$\lim_{x \to \pi} \frac{1 + \cos(x)}{\sin(x)}.$$

$$\lim_{x\to 0}\frac{\sin(x)}{\sqrt{1-\cos(x)}}.$$

$$\lim_{x\to +\infty} \sqrt{x+\sqrt{x}} - \sqrt{x}.$$

$$\lim_{x \to 0} \left(1 + \sin(x) \right)^{\frac{1}{\tan(x)}}.$$

Exercice 2 : Soient f et g deux fonctions définies sur \mathbb{R}_+ telles que :

$$\forall \, x \in \mathbb{R}_+, \quad g(x) > 0 \quad \text{ et } \quad \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \mathbf{L} \neq 0.$$

- 1 Montrer que $\lim_{x \to +\infty} f(x) = 0 \iff \lim_{x \to +\infty} g(x) = 0.$
- 2 Montrer que si L > 0, $\lim_{x \to +\infty} f(x) = \infty \iff \lim_{x \to +\infty} g(x) = \infty$.

Exercice 3: Soit $r_0 \in \mathbb{R}$. On pose:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -r_0^2 & 2r_0 \end{pmatrix} \in \mathscr{M}_2(\mathbb{R}) \quad \text{ et } \quad \mathbf{B} = \mathbf{A} - r_0 \mathbf{I}_2.$$

- Calculer B^2 puis B^n pour $n \ge 2$.
 - \bigcirc En déduire une expression simple de \mathbf{A}^n pour tout entier naturel n.
- On pose $(u_n)_{n\in\mathbb{N}}$ une suite de réels telle que $\forall\,n\in\mathbb{N},\,au_{n+2}+bu_{n+1}+cu_n=0,$ avec $(a\,;b\,;c)\in\mathbb{R}^3$ tels que $a\neq 0$ et $b^2-4ac=0$.
 - a Vérifier que $\forall n \in \mathbb{N}, u_{n+2} = 2r_0u_{n+1} r_0^2u_n$ avec $r_0 = -\frac{b}{2a}$.

Montrer que $\forall n \in \mathbb{N}, X_{n+1} = AX_n$.

- d On pose $\mu = u_0$ et $\lambda \in \mathbb{R}$ tel que $(\lambda + \mu)r_0 = u_1$.

Déduire des questions précédentes que :

$$\forall\,n\in\mathbb{N},u_n=(\lambda n+\mu)r_0^n.$$

3 Application numérique : donner l'expression explicite de la suite $(u_n)_{n\in\mathbb{N}}$ vérifiant le système :

$$\begin{cases} u_{n+2} - 6u_{n+1} + 9u_n = 0 \\ u_0 = 1 \\ u_1 = 3. \end{cases}$$