:	Prénom:
	Dérivabilité
Enoncer la formule de Le	eibnitz avec ses hypothèses.
Cnoncer le théorème de l	Rolle.
Enoncer le théorème des	s accroissements finis.
Cnoncer l'inégalité des a	accroissements finis.

Énoncer le théc	orème de prolongeme	ent \mathscr{C}^1 .	
Montror que f	$: \mathbb{R} \longmapsto \mathbb{R}$		est \mathscr{C}^1 sur \mathbb{R} et préciser $f'(0)$.
Montrer que j		1	est 6 sur in et preciser j (0).
	$\begin{cases} x \\ 0 \end{cases}$	$ \frac{1}{x^8} \text{si } x \neq 0 \\ \text{si } x = 0 $	
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	

7	Montrer que la fonction f :	$\left[\frac{3\pi}{4};\frac{5\pi}{4}\right] \longmapsto $	$\longrightarrow \mathbb{R}$	est k -lipschitzienne avec $k \in \mathbb{R}$ à
		x	$\tan(x)$	
	préciser.			

Déterminer si la matrice $A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$ est inversible et donner son inverse le cas échéant.