Étude de fonctions

On considère la fonction f définie par :

$$f: \quad \mathbb{R} \longmapsto \mathbb{R}$$

$$x \qquad \qquad \sqrt{x} e^{-\frac{x}{2}}$$

- \square Déterminer D, le domaine de définition de f.
- 2 a Trouver un intervalle D', le plus grand possible, sur lequel f est dérivable puis calculer f'.
 - (b) La fonction f est-elle de classe \mathscr{C}^1 sur \mathbb{R}_+ ? Justifier bien sûr.
- - \bigcirc Dresser le tableau de variations complet de f sur D.
- Établir que f réalise une bijection de [0;1] sur un segment [a;b] à préciser. On notera g la bijection réciproque.
- 6 On pose $\alpha = \sqrt{\frac{\ln 2}{2}}$. Trouver la valeur de $g(\alpha)$ puis en déduire celle de $g'(\alpha)$.

On considère dorénavant la fonction φ définie par :

$$\varphi: [1; +\infty[\longrightarrow \mathbb{R}$$

$$x \qquad \qquad g(f(x)).$$

- Justifier que φ est bien définie.
- 8 Montrer (intelligemment) que φ est strictement monotone sur $[1; +\infty[$ (on précisera la monotonie en question).
- 9 Justifier que φ est dérivable sur]1; $+\infty$ [puis montrer que :

$$\forall \ x \in \]1; +\infty[\,, \ \ \varphi'(x) = \frac{(1-x)\varphi(x)}{x(1-\varphi(x))}.$$

10 Retrouver alors la stricte monotonie de φ établie précédemment.