## Suites récurrentes



Une seule réponse exacte par question.

- Soit  $u_n = 1 \frac{1}{n}$  pour  $n \ge 1$ . Si  $(v_n)_{n \in \mathbb{N}}$  est une suite adjacente avec  $(u_n)_{n \in \mathbb{N}}$  alors
  - $\bigcirc$   $\square$  pour tout n, on a  $v_n > 1$
- $\bigcirc \qquad \lim_{n \to +\infty} v_n > 1$
- **b**  $\square$  pour tout n, on a  $v_n u_n \geqslant \frac{1}{n}$  **d**  $\square (v_n)_{n \in \mathbb{N}}$  est croissante
- Quelle relation de récurrence est vérifiée par la suite définie par  $u_n = 2^n + 3^n$ ?

 $\square u_{n+2} = 3u_{n+1} - 2u_n$ 

- $u_{n+2} = 5u_{n+1} + 6u_n$   $u_{n+2} = 5u_{n+1} 6u_n$
- Quel est le comportement de la suite définie par  $u_0 = \frac{1}{2}$  et la relation de récurrence  $u_{n+1} = u_n^3$ ?
  - $\bigcirc$   $\square$  elle tend vers 1 en croissant
- $\bigcirc$   $\square$  elle tend vers 0 en décroissant
- **b** □ elle tend vers 1 en décroissant
- $\bigcirc$   $\square$  elle diverge vers  $+\infty$  en croissant
- Soit  $(u_n)_{n\in\mathbb{N}}$  la suite définie par son premier terme  $u_1>0$  et la relation de récurrence  $u_{n+1} = u_n + \frac{1}{u}$ . Alors on peut montrer par récurrence sur n que :
  - (a)  $\square u_n$  est rationnel

 $\bigcup u_n > 0$ 

- $u_n \leqslant u_{n+1}$   $u_n \leqslant u_{n+1}$   $u_n \leqslant nu_1$
- Soit  $f: \mathbb{R} \to \mathbb{R}$  une fonction de classe  $\mathscr{C}^1$  sur  $\mathbb{R}$  et  $(u_n)_{n \in \mathbb{N}}$  une suite vérifiant la relation de récurrence  $u_{n+1}=f(u_n).$  On suppose que  $(u_n)_{n\in\mathbb{N}}$  converge vers  $\ell$  (avec  $u_n\neq \ell$  pour tout n). Alors le quotient  $\frac{u_{n+1}-\ell}{u_n-\ell}$  tend vers
  - (a)  $\Box$  0

**(b)** □ 1

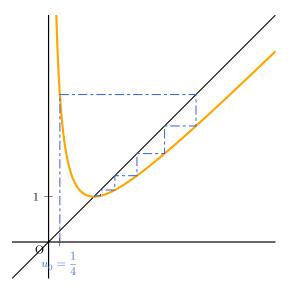
- $\bigcirc$   $\checkmark$   $f'(\ell)$
- $\bigcirc$   $\square$  f'(c) où c est compris entre  $\ell$  et  $u_n$
- 6 Soit  $(u_n)_{n\in\mathbb{N}}$  la suite définie par son premier terme  $u_0>0$  et la relation de récurrence  $u_{n+1} = u_n + u_n^2$ . Alors
  - (a)  $\square (u_n)_{n\in\mathbb{N}}$  converge car elle est croissante
  - b  $\square$   $(u_n)_{n\in\mathbb{N}}$  est strictement croissante donc elle tend vers  $+\infty$
  - $\bigcirc$   $\square$   $(u_n)_{n\in\mathbb{N}}$  est décroissante et positive donc converge et sa limite  $\ell$  vérifie  $\ell=\ell+\ell^2$
  - d  $\square$   $(u_n)_{n\in\mathbb{N}}$  est croissante et non majorée

## II

## **EXERCICES**

Sur la figure ci-contre sont représentées la courbe d'une fonction f, la droite d'équation y = x et un terme  $u_0$ .

Représentez les termes visibles de la suite définie par  $\begin{cases} u_0 \\ u_{n+1} = f(u_n), \ \forall \, n \in \mathbb{N}. \end{cases}$ 

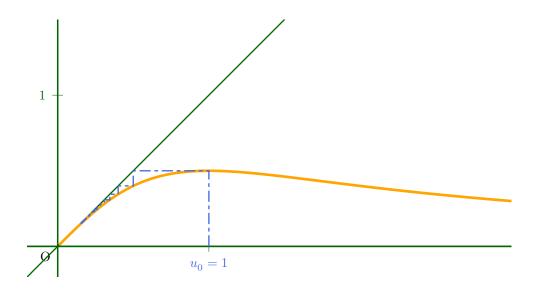


Étudier la convergence de la suite  $(u_n)_{n\in\mathbb{N}}$  définie par  $\begin{cases} u_0=1\\ u_{n+1}=\frac{u_n}{u_n^2+1} \end{cases}$ 

Posons  $f: x \longmapsto \frac{x}{1+x^2}$  et  $\delta(x) = f(x) - x$ .

- igodots Décroissante et minorée par 0, la suite  $(u_n)_{n\in\mathbb{N}}$  converge vers un réel  $\ell\geqslant 0$ .
- Comme f est continue sur  $[0\,;1]$ ,  $(u_n)_{n\in\mathbb{N}}$  converge vers un point fixe de f. Il n'y en a qu'un dans  $[0\,;1]$ , c'est 0.

Donc,  $(u_n)_{n\in\mathbb{N}}$  converge vers 0.



- a Montrer que  $(v_{2n})_{n\in\mathbb{N}}$  et  $(v_{2n+1})_{n\in\mathbb{N}}$  sont adjacentes.
- (b) Conclure.
- (a) On a :
  - $v_{2n+2}-v_{2n}=u_{2n+2}-u_{2n+1}\leqslant 0$  par décroissance de  $(u_n)_{n\in\mathbb{N}}$  donc  $(v_{2n})_{n\in\mathbb{N}}$  est décroissante.
  - $v_{2n+3}-v_{2n+1}=-u_{2n+3}+u_{2n+2}\geqslant 0$  par décroissance de  $(u_n)_{n\in\mathbb{N}}$  donc  $(v_{2n+1})_{n\in\mathbb{N}}$  est croissante.
  - $-v_{2n+1}-v_{2n}=-u_{2n+1}\xrightarrow[n\to+\infty]{}0.$

Les suites  $(v_{2n})_{n\in\mathbb{N}}$  et  $(v_{2n+1})_{n\in\mathbb{N}}$  sont donc adjacentes.

 $\textcircled{\textbf{l}}$  Les suites extraites de  $(v_n)_{n\in\mathbb{N}}$  d'indice pair et impair sont adjacentes donc convergentes vers la même limite. La suite  $(v_n)_{n\in\mathbb{N}}$  est donc également convergente vers cette dernière.