Nom:

Prénom:

Systèmes linéaires et Suites

QCM

Une seule réponse exacte par question.

- 1 Soit $(u_n)_{n\in\mathbb{N}}$ une suite strictement positive et décroissante. Alors
 - (a) \square $(u_n)_{n\in\mathbb{N}}$ converge et sa limite est positive ou nulle
 - \Box $(u_n)_{n\in\mathbb{N}}$ converge vers 0
 - \bigcirc \square $(u_n)_{n\in\mathbb{N}}$ converge et sa limite est strictement positive
 - \bigcirc \square $(u_n)_{n\in\mathbb{N}}$ converge et est constante à partir d'un certain rang
- Dans quel cas le théorème d'encadrement permet-il de montrer que la suite réelle $(u_n)_{n\in\mathbb{N}}$ converge?

 - $b \square \forall n \geqslant 1, \quad \frac{1}{n^2} \leqslant u_n \leqslant \frac{1}{n}$
- 3 Laquelle des suites suivantes est extraite de la suite $(u_{2n})_{n\geq 0}$?
 - $\bigcirc \qquad \square \ (u_{3n})_{n\geqslant 0}$

- 4 On pose $u_n = \cos\left(\frac{n\pi}{2}\right)$ pour tout $n \in \mathbb{N}$. Laquelle des suites suivantes converge?
 - (a) $\square (u_{2n})_{n \geq 0}$ (b) $\square (u_{3n})_{n \geq 0}$ (c) $\square (u_{4n})_{n \geq 0}$ (d) $\square (u_{n^2})_{n \geq 0}$

- Soit a>0. La suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\frac{n!}{a^n}$ est croissante à partir d'un certain rang
 - (a) \square pour tout a > 0

- \bigcirc \square seulement pour $a \geqslant 1$
- \Box seulement pour a dans]0,1]
- \bigcirc Dour aucune valeur de a
- 6 Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites réelles telles que (u_n-v_n) converge, alors
 - (a) $\square (u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ convergent
 - $\Box (u_n)_{n\in\mathbb{N}}$ ou $(v_n)_{n\in\mathbb{N}}$ converge
 - $\bigcirc \ \square \ (u_n)_{n \in \mathbb{N}} \ \text{converge} \ \Longleftrightarrow \ (v_n)_{n \in \mathbb{N}} \ \text{converge}$
 - $\bigcirc \left(\frac{u_n}{v_n}\right)_{n>0}$ converge vers 1

7	Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. Laquelle des conditions suivantes permet de dire que $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante à partir d'un certain rang?			
	\bigcirc \square u_n tend vers 0			nd vers 1
		vers 0		ad vers $\frac{1}{2}$
8	Si $(u_n)_{n \in \mathbb{N}}$ est une suite réelle telle que $1 - \frac{1}{n} < u_n < 2 + \frac{1}{n}$ pour tout $n \geqslant 1$, alors			
	$ \begin{array}{c} \Box \lim_{n \to +\infty} u_n \in [1, 2] \end{array} $		$ \bigcirc \qquad \lim_{n \to +\infty} u_n $	
	$ \begin{array}{c} \bullet \\ \bullet \\ \end{array} \qquad \lim_{n \to +\infty} u_n \in]1,2[$			ne converge pas forcément
9	La suite $(u_n)_{n\in\mathbb{N}}$ définie	$e par u_n = n + (-1)^n es$	st	
	a □ croissante d □ croissante et déc	b □ décroissan croissante selon la parit	_	\square non monotone
10	Soit $(u_n)_{n\in\mathbb{N}}$ une suite dire que	le réels strictement posi	tifs et $v_n = \frac{u_{n+1}}{u_n}$	pour tout n . Alors on peut
		erge, alors $(v_n)_{n\in\mathbb{N}}$ convers 1, alors $(u_n)_{n\in\mathbb{N}}$ coge vers $+\infty$, alors $(v_n)_r$ ge vers $+\infty$, alors $(u_n)_r$	nverge $a \in \mathbb{N}$ tend vers 1	+∞
11	Soit $(u_n)_{n\in\mathbb{N}}$ une suite i	réelle croissante.		
	Laquelle des conditions suivantes n'est pas suffisante pour affirmer que $(u_n)_{n\in\mathbb{N}}$ converge ?			
	\square $(u_n)_{n\in\mathbb{N}}$ est maj \square la suite extraite			$u_{n+1} - u_n$) tend vers 0 extraite (u_{2n}) est bornée
12	Parmi les suites suivant	ses, laquelle est une suit	e géométrique?	
			$ \bigcirc \ \square \ \left(2^{n^2}\right)_{n\in\mathbb{N}} $	
13	Combien vaut $a + a^2 + \dots + a^n$ lorsque a est un réel différent de 1?			1?
			$ \Box \frac{a(1-a^n)}{1-a} $) -
14	Soit $(u_n)_{n\in\mathbb{N}}$ une suite i définie par $t_n=u_n-a$			pour tout n . Alors la suite
	$\bigcirc a \square a = 3$	\bigcirc \Box $a=-3$	$\bigcirc \square a = 2$	$\Box a = 0$

EXERCICES

	aussi deux solutions distinctes.
	$\left\{ \begin{array}{lcl} x+y+z-3t & = & 1 \\ 2x+y-z+t & = & -1 \end{array} \right.$
	$u_0 = \frac{\sqrt{37}}{2}$
2	Déterminer la limite de la suite définie par $\begin{cases} u_0 = \frac{\sqrt{37}}{5} \\ u_{n+1} = \frac{1}{\sqrt{5}} u_n + \sqrt{5} - 1. \end{cases}$

1 Résoudre le système suivant et donner précisément son ensemble de solutions. On donnera

3	Pour tout $n \in \mathbb{N}$, on pose : $u_n = \frac{n}{9} - \left\lfloor \frac{\sqrt{n}}{3} \right\rfloor^2$.
4	Étudier si la fonction définie par $f: \mathbb{R} \longmapsto \mathbb{R}$ est de classe \mathscr{C}^1 et
	$x \qquad \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0. \end{cases}$
	$\int_{0}^{x} 0 \qquad x = 0.$
	préciser $f'(0)$ le cas échéant.