Accroissements finis et Suites récurrentes

Soit $x \in \mathbb{R}$:

$$g(x) \text{ existe } \iff \begin{cases} x > 0 \\ 2 - \ln x \geqslant 0 \end{cases} \iff \begin{cases} x > 0 \\ \ln x \leqslant 2 \end{cases} \iff \begin{cases} x > 0 \\ x \leqslant e^2, \end{cases}$$

 $donc D = 0; e^2.$

Comme $\ln x \xrightarrow[x\to 0^+]{} -\infty$, alors $2 - \ln x \xrightarrow[x\to 0^+]{} +\infty$ donc par composition,

$$g(x) = \sqrt{2 - \ln x} \underset{x \to 0^+}{\longrightarrow} +\infty.$$

De même en $e^2: 2 - \ln x \xrightarrow[x \to e^2]{} 0 \text{ donc } \boxed{g(x) \xrightarrow[x \to e^2]{} 0}.$

Si $x \in]0$; $e^2[$, alors $2 - \ln x > 0$ (même inéquation que précédemment, avec une inégalité stricte). Ainsi, g est dérivable sur]0; $e^2[$ comme racine carrée de $x \mapsto 2 - \ln x$ qui est dérivable (par somme) et strictement positive sur cet intervalle.

Comme $g'(x) = \frac{-\frac{1}{x}}{2\sqrt{2-\ln x}} = -\frac{1}{2x\sqrt{2-\ln x}} < 0$, on en déduit que g est strictement décroissante sur I.

Commentaires:

- Il est nettement meilleur de prouver la stricte décroissance par composition mais comme on a besoin de la dérivée plus loin, j'ai laissé ...
- Encore une fois, invoquer des composées de dérivées pour justifier la dérivabilité ne suffit pas si vous ne dites pas que la fonction composée est à valeurs dans le domaine de dérivabilité de la composante, ici $x \mapsto \sqrt{x}$.

Finalement:

x	0	e^2
g'(x)	_	
g	$+\infty$	0

- Soit $x \in I$. Par décroissance de g, on a $g(e) \leqslant g(x) \leqslant g(1)$ i.e. $1 \leqslant g(x) \leqslant \sqrt{2}$. Comme $\sqrt{2} \leqslant e$ (car $\sqrt{2} \leqslant 2 \leqslant e$), on a bien $g(x) \in I$, d'où $g(I) \subset I$.
- Soient I un intervalle non trivial et $f: I \to \mathbb{R}$ une fonction. Si :
 - (i) f est dérivable sur I,
 - (ii) il existe $\mathcal{M} \in \mathbb{R}_+$ tel que $|f'| \leqslant \mathcal{M}$ sur \mathcal{I} ,

alors f est M-lipschitzienne sur I.

b) D'abord, g est dérivable sur]0; e²[, donc sur I. Soit $x\in {\rm I.}$

On a vu que
$$g'(x) = -\frac{1}{2x\sqrt{2 - \ln x}}$$
, donc $|g'(x)| = \frac{1}{2x\sqrt{2 - \ln x}}$.

D'une part, $\frac{1}{2x} \leqslant \frac{1}{2} \operatorname{car} x \geqslant 1$.

D'autre part,

$$\begin{split} & \ln x \leqslant \ln \, \mathrm{e} = 1 \\ & \mathrm{donc} \quad 2 - \ln x \geqslant 2 - 1 = 1 \\ & \mathrm{donc} \quad \frac{1}{\sqrt{2 - \ln x}} \leqslant \frac{1}{\sqrt{1}} = 1 \end{split} \qquad \text{(décroissance de } t \mapsto t^{-1/2} = \frac{1}{\sqrt{t}} \text{)}.$$

Par produit d'inégalités à termes positifs, $|g'(x)| \leq \frac{1}{2} \times 1 = \frac{1}{2}$.

Finalement, d'après l'inégalité des accroissements finis, g est $\frac{1}{2}$ -lipschitzienne sur I.

Commentaires : Évitez les quotients dans vos expressions de la lipschitziannité.

6 h est dérivable sur D (somme de ln et d'un polynôme) et si $x \in D$, $h'(x) = 2x + \frac{1}{x} > 0$ donc h est strictement croissante sur D (rappelons que D est un **intervalle**!). On a aussi $h(x) \xrightarrow[x \to 0^+]{} -\infty$ et $h(e^2) = e^4$, d'où :

x	0	e^2
h'(x)		+
h	$-\infty$	• e ⁴

Ainsi, h est continue (car dérivable) et strictement croissante sur l'intervalle D (car h' > 0) donc d'après le théorème de la bijection, h réalise une bijection de D =]0; e^2] sur l'intervalle $h(D) =]-\infty$; e^4].

Comme $0 \in]-\infty$; e^4], il existe un unique $\alpha \in D$ tel que $h(\alpha) = 0$.

Or.

$$g(x) = x \iff \sqrt{2 - \ln x} = x \iff 2 - \ln x = x^2 \qquad \text{(stricte croissance de } t \mapsto t^2 \text{ sur } \mathbb{R}_+)$$

$$\iff x^2 + \ln x - 2 = 0$$

$$\iff h(x) = 0,$$

d'où $g(\alpha) = \alpha$ (et il n'y a pas d'autres points fixes de g, car on a procédé par équivalences ci-dessus).

Enfin, h(1)=-1<0 et $h(e)=e^2-1>0$ donc par stricte croissance de h, $1<\alpha<$ e, d'où $\alpha\in I$.

On procède par récurrence. Soit (P_n) : « x_n existe et $x_n \in I$ » pour $n \in \mathbb{N}$.

 $\mathit{Initialisation}.$ Par hypothèse, $x_0 \in \mathcal{I}$ donc (\mathcal{P}_0) est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}.$ Soit $n\in\mathbb{N}$ tel que (\mathbf{P}_n) est vraie. Comme $x_n\in\mathbf{I}$ et que \mathbf{I} est stable par g (question 4), alors $g(x_n)=x_{n+1}$ existe et appartient à $\mathbf{I},$ d'où $(\mathbf{P}_{n+1}).$

Conclusion. Par récurrence, tous les termes x_n existent et sont dans I c'est-à-dire $(x_n)_{n\in\mathbb{N}}$ est bien définie.

 $\fbox{8}$ D'après la question 5b, g est $\frac{1}{2}$ -lipschitzienne sur I, c'est-à-dire :

$$\forall \ (x,y) \in \mathcal{I}^2, \quad |g(x)-g(y)| \leqslant \frac{1}{2} \left| x-y \right|.$$

Prenons $x=x_n\in \mathcal{I}$ et $y=\alpha\in \mathcal{I}$. Puisque $g(x_n)=x_{n+1}$ et $g(\alpha)=\alpha,$ on obtient exactement :

$$\boxed{|x_{n+1} - \alpha| \leqslant \frac{1}{2} |x_n - \alpha|.}$$

9

 $\text{ a) D\'efinissons } (\mathbf{P}_n): \ll |x_n-\alpha| \leqslant \left(\frac{1}{2}\right)^n |x_0-\alpha| \text{ » pour } n \in \mathbb{N}.$

Initialisation. $|x_0 - \alpha| = (\frac{1}{2})^0 |x_0 - \alpha| \text{ donc } (P_0) \text{ est vraie.}$

Hérédité. Soit $n \in \mathbb{N}$ tel que (P_n) est vraie :

$$\begin{split} |x_{n+1} - \alpha| \leqslant \frac{1}{2} \, |x_n - \alpha| \leqslant \frac{1}{2} \times \left(\frac{1}{2}\right)^n |x_0 - \alpha| & \qquad \qquad \text{(d'après } (\mathbf{P}_n)) \\ \leqslant \left(\frac{1}{2}\right)^{n+1} |x_0 - \alpha| \, , & \qquad \qquad \end{split}$$

donc (P_{n+1}) est vraie.

 $\begin{aligned} &Conclusion. \ \text{Par r\'ecurrence,} \ (\mathbf{P}_n) \ \text{est vraie pour tout} \ n \in \mathbb{N}. \ \text{Enfin, puisque} \ x_0 \in \mathcal{I} = [1; \ \mathbf{e}] \\ &\text{et} \ \alpha \in \mathcal{I}, \ \text{alors} \ |x_0 - \alpha| \leqslant \ \mathbf{e} - 1 \leqslant 2, \ \mathbf{d\'où} \ : \end{aligned}$

$$\boxed{\forall \ n \in \mathbb{N}, \quad |x_n - \alpha| \leqslant \left(\frac{1}{2}\right)^n |x_0 - \alpha| \leqslant \left(\frac{1}{2}\right)^n \cdot 2 = \frac{1}{2^{n-1}}.}$$

- On cherche N tel que $|x_N \alpha| \le 10^{-6}$, ce qui est assuré dès lors que $\frac{1}{2^{N-1}} \le 10^{-6}$, donc on résout l'inéquation :

$$\begin{split} \frac{1}{2^{n-1}} \leqslant 10^{-6} &\iff 2^{n-1} \geqslant 10^6 & \text{(stricte décroissance de } t \mapsto \frac{1}{t} \text{ sur } \mathbb{R}_+^*) \\ &\iff (n-1)\log 2 \geqslant 6 & \text{(stricte croissance de log)} \\ &\iff n \geqslant 1 + \frac{6}{\log 2} & \text{(car } \log 2 > 0). \end{split}$$

Il suffit de prendre $N = 1 + \left\lfloor 1 + \frac{6}{\log 2} \right\rfloor = 21.$

Comme précédemment, x_n est une valeur approchée de α à 10^{-k} près dès que $|x_n - \alpha| \le 10^{-k}$, ce qui est assuré dès que $\frac{1}{2^{n-1}} \le 10^{-k}$.

```
from math import sqrt , log # pour utiliser les fonctions racine et ln def valeur_approchee(k): 
n = 0 \# \text{ initialisation du rang de la suite}
x_n = 1 \# \text{ initialisation du premier terme de la suite}
\text{while } 1/2**(n-1) > 10**(-k): \# \text{ on cherche le premier rang n}
\# \text{tel que } 1/2**(n-1) <= 10**(-k)
x_n = \text{sqrt}(2-\log(x_n)) \# \text{ mise à jour du terme de la suite}
n += 1 \# \text{ mise à jour du rang}
\text{return } x_n \# \text{ on renvoie la valeur approchée}
\# \text{ (et non le rang n, attention)}
```

Commentaires: On ne vous demandait pas un programme de dichotomie ou un autre quelconque d'approximation de points fixes mais un en accord avec l'exercice s'appuyant sur le résultat de la question 9.a.

Remarque: En accord, avec l'enchaînement des questions et à la suite de la question 10, vous pouviez aussi très bien proposer une boucle for jusqu'à $N=1+\left\lfloor 1+\frac{k}{\log 2}\right\rfloor$. On ne vous aurait rien dit même si c'est mieux une boucle while je trouve.