Mathématiques

Problème I: Commerciaires: P_n n'est pas un polynôme mais une fonction polynomiale.

 $\forall n \in \mathbb{N}, P_n = (x^5 - 1) + nx$, dont les puissances sont impaires est une somme de fonctions strictement croissantes donc strictement croissante.

De plus, $\lim_{x\to\pm\infty} P_n(x) = \lim_{x\to\pm\infty} x^5 \left(1 + \frac{n}{x^4} - \frac{1}{x^5}\right) = \pm\infty$ d'après les théorèmes sur les sommes et produits de limites.

2 a D'après la question précédente, la fonction P_n est continue et strictement croissante de \mathbb{R} sur \mathbb{R} . Elle y établit donc une bijection de \mathbb{R} sur lui-même.

Il existe donc un unique réel α_n tel que $P_n(\alpha_n) = 0$.

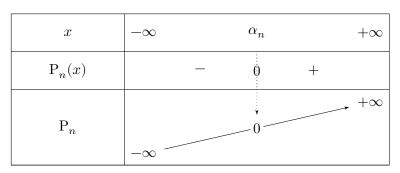
Comme $P_0(1) = 0$, on en déduit que $\alpha_0 = 1$, unique racine de P_0 .

Commentaires : Le théorème de Bolzano ne donne pas l'unicité du zéro. Seulement son existence.

De toute manière, me justifier l'existence de α_n en commençant par me dire qu'il existe a et b tels que P(a) < 0 et P(b) > 0 est un peu bizarre. Autant me dire directement que $P(\alpha_n) = 0$.

On pouvait le faire ainsi mais alors il fallait utiliser la caractérisation des limites infinies pour justifier qu'il existait un b tel que $x > b \implies P(x) > A$ pour n'importe quel A et prendre A = 1 par exemple. Pareil pour a et la limite $-\infty$.

b D'après la question précédente et la stricte monotonie de \mathbf{P}_n , on en déduit son signe sur \mathbb{R} :



$$P_n(x) \ge 0 \iff x \in [\alpha_n; +\infty[$$
.

Commentaires: Sans stricte monotonie, point de points.

3 Il est facile de calculer $P_n(0) = -1 < 0$ et $P_n(1) = n \geqslant 0$.

D'où, $P_n(0) \leqslant P_n(\alpha_n) \leqslant P_n(1)$, ce qui équivaut (par **stricte** croissance de P_n sur $[0\,;1]$) à

$$0 \leqslant \alpha_n \leqslant 1. \tag{XX.1}$$

- \bigcirc Soit $n \in \mathbb{N}$.

Comme $\alpha_n \in [0\,;1]$, d'après la question précédente $\mathbf{P}_{n+1}(\alpha_n) - \mathbf{P}_n(\alpha_n) \geqslant 0$.

Or, $P_n(\alpha_n)=0$ entraı̂ne $P_{n+1}(\alpha_n)\geqslant 0$ qui implique à son tour $\alpha_{n+1}\in [\alpha_n\,;+\infty[$ *i.e.* $\alpha_{n+1}\leqslant \alpha_n.$

La suite $(\alpha_n)_{n\in\mathbb{N}}$ est donc décroissante.

d La suite $(\alpha_n)_{n\in\mathbb{N}}$ est décroissante et minorée (par 0), donc elle converge vers un réel α d'après le théorème de la limite monotone.

En passant à la limite dans les inégalités larges de (XX.1), on obtient :

$$0 \leqslant \alpha \leqslant 1$$
.

Soit $n \in \mathbb{N}^*$.

$$P_n\left(\frac{1}{n}\right) = \frac{1}{n^5} + 1 - 1 = \frac{1}{n^5} \ge 0.$$

b Soit $n \in \mathbb{N}^*$. Toujours grâce à la **stricte** croissance de P_n sur \mathbb{R} :

$$\mathrm{P}_n\left(\frac{1}{n}\right)\geqslant 0\iff \mathrm{P}_n\left(\frac{1}{n}\right)\geqslant \mathrm{P}_n(\alpha_n)\iff \frac{1}{n}\geqslant \alpha_n.$$

© Comme $\forall\,n\in\mathbb{N}^*,\,0\leqslant\alpha_n\leqslant\frac{1}{n}$ alors, d'après le théorème d'encadrement :

$$\lim_{n \to +\infty} \alpha_n = 0.$$

Par hypothèse, on a $P_n(\alpha_n)=0\iff n\alpha_n-1=-\alpha_n^5\xrightarrow[n\to+\infty]{}0$ d'après la question précédente.

$$\text{Donc} \lim_{n \to +\infty} \frac{\alpha_n}{\frac{1}{n}} = 1 \text{ i.e. } \alpha_n \underset{n \to +\infty}{\sim} \frac{1}{n}.$$

En particulier, par compatibilité de la relation \sim avec le produit, $\alpha_n^5 \sim \frac{1}{n \to +\infty} \frac{1}{n^5}$.

La même relation s'écrit alors :

$$n\alpha_n - 1 = -\alpha_n^{\ 5} \iff n\left(\alpha_n - \frac{1}{n}\right) \underset{n \to +\infty}{\sim} -\frac{1}{n^5} \iff \frac{1}{n} - \alpha_n \underset{n \to +\infty}{\sim} \frac{1}{n^6}.$$

On a ainsi obtenu un développement asymptotique de α_n à l'ordre 6 en $\frac{1}{n}$:

$$\alpha_n \stackrel{=}{\underset{n \to +\infty}{=}} \frac{1}{n} - \frac{1}{n^6} + o\left(\frac{1}{n^6}\right).$$

Problème 2 :

Partie I

 $\ \ \, 1$ f est de classe \mathscr{C}^{∞} sur $\mathbb R$ en tant que différence de telles fonctions.

De plus, $\forall\,x\in\mathbb{R},\,f'(x)=2\mathrm{ch}\,(x)-1>0$ car $\mathrm{ch}\,(x)\geqslant1$ pour tout réel x.

Continue et strictement monotone sur \mathbb{R} , la fonction f établit donc une bijection de \mathbb{R} sur son image.

Or, par croissances comparées, $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \mathrm{e}^x \left(1 - \frac{1}{\mathrm{e}^{2x}} - \frac{x}{\mathrm{e}^x}\right) = +\infty.$

La fonction f étant impaire, on en déduit immédiatement, $\lim_{x\to -\infty} f(x) = -\infty$.

Finalement, on a prouvé que f établissait une bijection (seulement continue pour l'instant) de $\mathbb R$ sur lui-même.

Sur \mathbb{R} , la dérivée de f ne s'annule pas, la fonction f^{-1} est donc de classe \mathscr{C}^{∞} sur $f(\mathbb{R}) = \mathbb{R}$.

Commertaires: C'est quand même dommage de voir encore au second semestre des élèves ne pas savoir que la dérivée de sh est ch ou que cette dernière est minorée par 1. À un moment ou à un autre, il va falloir vous rendre compte que le peu que vous saviez du lycée n'est pas suffisant pour la prépa et que c'est bien d'apprendre ses cours.

D'après la question précédente, f^{-1} est définie sur \mathbb{R} , qui est symétrique par rapport à 0. Soit $y \in \mathbb{R}$. En utilisant l'imparité de f, on a :

$$f\big(f^{-1}(-y)\big) = -y = -f\big(f^{-1}(y)\big) = f\big(-f^{-1}(y)\big)$$

Correction Devoir surveillé $n^{\circ}5$

Comme f est injective,

$$f(f^{-1}(-y)) = f(-f^{-1}(y)) \implies f^{-1}(-y) = -f^{-1}(y).$$

Ainsi, f^{-1} est impaire.

Commerciaires: Même si c'est un fait général, ici on vous demandait de prouver que la réciproque d'une fonction impaire est impaire.

Comme sh admet un DL à l'ordre 4 en 0, f aussi et on a :

$$f(x) = 2 \left[x + \frac{x^3}{6} + o(x^4) \right] - x = x + \frac{1}{3}x^3 + o(x^4).$$

Comme f^{-1} est de classe \mathscr{C}^{∞} sur \mathbb{R} , d'après le théorème de Taylor-Young, elle admet un développement limité à tout ordre en 0.

Comme f^{-1} est impaire, son DL d'ordre 4 en 0 est de la forme :

$$f^{-1}(x) = a_1 x + a_3 x^3 + o(x^4)$$
.

Par composition des développements limités, on a :

$$\begin{split} f^{-1}(f(x)) &= x \\ a_1\left(x + \frac{1}{3}x^3 + \mathrm{o}\left(x^4\right)\right) + a_3\left(x + \mathrm{o}\left(x^2\right)\right)^3 &= x + \mathrm{o}\left(x^4\right) \\ a_1x + \left(\frac{1}{3}a_1 + a_3\right)x^3 &= x + \mathrm{o}\left(x^4\right) \end{split}$$

Par unicité des développements limités, on peut identifier les coefficients :

$$\begin{cases} a_1 &= 1 \\ a_1 + 3a_3 &= 0 \end{cases} \iff \begin{cases} a_1 &= 1 \\ a_3 &= -\frac{1}{3}. \end{cases}$$

Finalement,

$$f^{-1}(x) = x - \frac{1}{3}x^3 + o(x^4).$$

Comme f^{-1} est de classe \mathscr{C}^{∞} sur \mathbb{R} , c'est également le cas de sa dérivée $(f^{-1})'$ qui admet aussi un développement limité à tout ordre en 0 d'après le théorème de Taylor-Young.

On sait qu'alors celui-ci est obtenu en dérivant celui de f^{-1} :

$$\left(f^{-1}\right)'(x) \underset{x \rightarrow 0}{=} 1 - x^2 + \mathrm{o}\left(x^3\right)$$

PARTIE II

On en déduit que $\lim_{x\to 0}g(x)=1$ d'après les théorèmes sur les équivalences « existence de DL_0 et continuité ».

Comme composée de fonctions continues sur \mathbb{R}^* dont le dénominateur ne s'annule pas, g est clairement continue sur \mathbb{R}^* . On peut donc la prolonger par continuité à \mathbb{R} tout entier en posant g(0) = 1.

Pour les mêmes raisons, g (son prolongement en fait) est facilement de classe \mathscr{C}^1 sur \mathbb{R}^* .

D'après les théorèmes sur les équivalences « existence de DL_1 et dérivabilité », on en déduit également qu'elle est dérivable en 0 avec g'(0)=0.

Il suffit enfin de conclure avec le théorème « de prolongement de classe \mathscr{C}^1 » : g continue sur \mathbb{R} , de classe \mathscr{C}^1 sur \mathbb{R}^* dont la dérivée admet une limite finie en 0 est de classe \mathscr{C}^1 sur \mathbb{R} tout entier :

$$g$$
 est de classe \mathscr{C}^1 sur \mathbb{R} et $g'(0) = 0$.

8 D'après la question précédente, la fonction g, de classe \mathscr{C}^1 sur \mathbb{R} , est dérivable et on a :

$$\forall\,x\in\mathbb{R}^*,g'(x)=\frac{x\left(f^{-1}\right)'(x)-f^{-1}(x)}{x^2}$$

Avec les DLs de f^{-1} et $(f^{-1})'$ obtenus à la partie précédente, on a :

$$= \frac{1}{x \to 0} \frac{1}{x^2} \left[x \left(1 - x^2 + \mathrm{o} \left(x^3 \right) \right) - \left(x - \frac{1}{3} x^3 + \mathrm{o} \left(x^4 \right) \right) \right]$$

$$= \frac{1}{x \to 0} \frac{1}{x^2} \left[x - x^3 - x + \frac{1}{3} x^3 + \mathrm{o} \left(x^4 \right) \right] = \frac{1}{x^2} \left[-\frac{2}{3} x^3 + \mathrm{o} \left(x^4 \right) \right]$$

$$= \frac{-2}{x \to 0} \frac{2}{3} x + \mathrm{o} \left(x^2 \right)$$

Donc,
$$g'(x) \underset{x\to 0}{\sim} -\frac{2}{3}x$$
.

En particulier, en retrouve g'(0) = 0.

Commentaires: g n'est que classe \mathscr{C}^1 donc n'admet qu'un DL_1 et vous ne pouvez pas affirmer dériver le DL de g pour obtenir un DL_1 de g'. Seulement DL_0 de cette manière.

9 Au voisinage de 0, deux fonctions équivalentes (en 0) ont le même signe.

Or, $\forall x \in \mathbb{R}_+, -\frac{2}{3}x \leq 0$. Il existe donc un voisinage de 0 à par valeurs supérieures *i.e.* un intervalle de la forme $[0; \alpha]$ pour un certain $\alpha \in \mathbb{R}_+^*$ sur lequel $g'(x) \leq 0$.

En conclusion, il existe $\alpha \in \mathbb{R}_+^*$ tel que g soit décroissante sur $[0\,;\alpha]$.

Commentaires: Les équivalents ne sont vrais que sur un voisinage de 0 donc n'espérez pas avoir des informations globales à partir d'un développement limité qui porte pourtant bien son nom : « LI.MI.TÉ! ».

Partie III

Comme on a déjà prouvé que f était bijective sur \mathbb{R} , il est inutile ici d'invoquer le théorème de la bijection. Il suffit de composer par f^{-1} :

$$\begin{split} \forall\, n \in \mathbb{N}^*, f\left(\frac{x}{n}\right) &= \frac{1}{n} \iff \frac{x}{n} = f^{-1}\left(\frac{1}{n}\right) \\ &\iff x = nf^{-1}\left(\frac{1}{n}\right) = \frac{f^{-1}(\frac{1}{n})}{\frac{1}{n}} \\ &\iff x = g\left(\frac{1}{n}\right). \end{split}$$

 $\forall\,n\in\mathbb{N}^*,\,\text{l'équation}\,\,f\Bigl(\frac{x}{n}\Bigr)=\frac{1}{n}\,\,\text{admet une unique solution réelle}\,\,u_n=g\left(\frac{1}{n}\right).$

Comme la suite $(n)_{n\in\mathbb{N}^*}$ est croissante, par composition par des fonctions décroissantes, $\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}$ est décroissante puis $\left(u_n=g\left(\frac{1}{n}\right)\right)_{n\in\mathbb{N}^*}$ est croissante si g est décroissante.

Or, d'après [9], g l'est sur l'intervalle $[0;\alpha]$. Il suffit donc de « faire rentrer » les $\frac{1}{n}$ dedans.

Comme la suite $\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}$ converge positivement vers 0, il existe $n_0(\alpha)\in\mathbb{N}^*$ tel que :

$$n \geqslant n_0 \implies 0 \leqslant \frac{1}{n} \leqslant \alpha.$$

La suite $(u_n)_{n\in\mathbb{N}^*}$ est donc croissante à partir d'un certain rang (ici n_0).

Commentaires: Le sujet ne demande pas ce rang explicitement mais il n'est pas dur de trouver $n_0 = \left\lfloor \frac{1}{\alpha} \right\rfloor + 1$.

On conclut par composition de limite avec $\lim_{n\to+\infty}\frac{1}{n}=0$ et $\lim_{x\to0}g(x)=g(0)=1$ par continuité de g.

En conclusion, $(u_n)_{n\in\mathbb{N}^*}$ est croissante à partir d'un certain rang et converge vers 1.

Commentaires : À partir de la question précédente et du développement limité de g en 0, on avait déjà, par composée à droite, la limite de $u_n = g\left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} 1$. mais l'énoncé était ainsi fait.

Comme $g(x) = 1 - \frac{1}{3}x^2 + o(x^3)$, avec $\frac{1}{n} = o(1)$,

$$\begin{split} u_n = & g\left(\frac{1}{n}\right) \underset{n \to +\infty}{=} 1 - \frac{1}{3n^2} + \operatorname{o}\left(\frac{1}{n^3}\right). \\ u_n - 1 \underset{n \to +\infty}{=} -\frac{1}{3n^2} + \operatorname{o}\left(\frac{1}{n^2}\right). \end{split}$$

Donc, $u_n - 1 \underset{n \to +\infty}{\sim} -\frac{1}{3n^2}$.

 $\begin{array}{l} \textbf{Commentaires}: \ L'\'ecriture \ u_n-1 \underset{n \to +\infty}{\sim} -\frac{1}{3n^2} \ montre, \ qu'\`a \ partir \ d'un \ certain \ rang, \ la \ suite \ (u_n)_{n \in \mathbb{N}} \\ converge \ vers \ 1 \ par \ valeurs \ inf\'erieures. \ Cela \ ne \ prouve \ pourtant \ pas \ la \ croissance \ de \ (u_n)_{n \in \mathbb{N}}. \end{array}$

Problème 3

- \blacksquare Si P = 1, alors P(X + 2) P(X) = 1 1 = 0 donc P = 1 est une solution de (E).
 - Si $P = \frac{X}{2}$, alors $P(X+2) P(X) = \frac{X+2}{2} \frac{X}{2} = 1 = X^0$ et $P(0) = \frac{0}{2} = 0$ donc $P = \frac{X}{2}$ est une solution de (E_0) .
 - Si $P = \frac{X^2}{2}$, alors $P(X+2) P(X) = \frac{(X+2)^2}{2} \frac{X^2}{2} = \frac{2X+4}{2} = X+2$ donc $P = \frac{X^2}{2}$ n'est solution d'aucune équation précitée.

 $\textbf{\textit{Commentaires}}: \ \textit{Si} \ P \equiv 1_{\mathbb{R}[X]} \ \textit{alors} \ P(X) = P(X+2) = P(X^n) = P(X+k) = P(nX) = P(...) = 1_{\mathbb{R}[X]} \ \textit{!}$

2 a Soit P une solution de (E) telle que $deg(P) \ge 1$.

D'après le théorème de d'Alembert-Gauss, on sait que P admet une racine complexe donc $\exists \alpha \in \mathbb{C}, P(\alpha) = 0$.

b Montrons ce résultat par récurrence sur $k \in \mathbb{N}$ et posons pour tout $k \in \mathbb{N}$, $\mathscr{P}(k)$ la propriété « $\alpha + 2k$ est une racine de P ».

Initialisation. Si k = 0 alors $\alpha + 2 \times 0 = \alpha$ est une racine de P d'après la question précédente. Donc $\mathcal{P}(0)$ est vraie.

Hérédité. Soit $k \in \mathbb{N}$ et supposons que $\mathscr{P}(k)$ est vraie *i.e.* $P(\alpha + 2k) = 0$.

Or, P est une solution de (E) donc en évaluant cette équation en $\alpha + 2k$, on a :

$$\mathrm{P}(\alpha+2k+2) - \underbrace{\mathrm{P}(\alpha+2k)}_{=0} = 0 \iff \mathrm{P}(\alpha+2(k+1)) = 0.$$

Donc $\alpha + 2(k+1)$ est aussi une racine de P et $\mathscr{P}(k+1)$ est vraie.

Conclusion. Initialisée pour k=0 et héréditaire, la propriété $\mathscr{P}(k)$ est vraie pour tout $k\in\mathbb{N}$:

$$\forall k \in \mathbb{N}, \quad \alpha + 2k \text{ est une racine de P.}$$

 \bigcirc D'après les questions précédentes, si P est une solution de (E) telle que $\deg(P) \geqslant 1$ alors P admet une infinité de racines distinctes.

C'est donc le polynôme nul ce qui contredit le fait que $deg(P) \ge 1$.

Dès lors les seules solutions possibles de (E) sont les polynômes constants.

Réciproquement, soit $P = \lambda$ un polynôme constant de $\mathbb{R}[X]$ *i.e.* $\lambda \in \mathbb{R}$.

Alors
$$P(X + 2) - P(X) = \lambda - \lambda = 0$$
: P est solution de (E).

Conclusion, l'ensemble des solutions de (E) est $\mathbb{R}_0[X]$, l'ensemble des polynômes constants.

Soit $n \in \mathbb{N}$ et soient P et Q deux solutions de (E_n) . Alors,

$$\begin{cases} P(X+2) - P(X) = X^n, & P(0) = 0 \\ Q(X+2) - Q(X) = X^n, & Q(0) = 0. \end{cases}$$

En posant R = P - Q, par soustraction des deux égalités ci-dessus, on a :

$$R(X+2) - R(X) = 0.$$

Autrement dit, R est une solution de (E).

D'après la question précédente, c'est donc un polynôme constant et il existe $\lambda \in \mathbb{R}$ telle que $R = P - Q = \lambda$.

En évaluant en 0, on obtient $R(0)=0-0=\lambda$ donc R est le polynôme nul ou encore P=Q ce qui démontre que :

 (\mathbf{E}_n) admet au plus une solution.

Commertaires: Certes, deux polynômes sont égaux si, et seulement si ils ont les mêmes coefficients mais surement pas des sommes de polynômes du genre P(X+2)-P(X). Pour ceux-là, il faut invoquer d'autres théorèmes et, notamment, passer par le nombre de leurs racines. Pour peu que ce nombre soit supérieur à leur degré, on pourra conclure à la nullité du polynôme.

- 4 Soit P une solution de (E_n) .
 - ⓐ Par dérivation (formelle) de (E_n) , on obtient :

$$\mathbf{P}^{(n+1)}(\mathbf{X}+2) - \mathbf{P}^{(n+1)}(\mathbf{X}) = \left(\mathbf{X}^n\right)^{(n+1)} \iff \mathbf{P}^{(n+1)}(\mathbf{X}+2) - \mathbf{P}^{(n+1)}(\mathbf{X}) = 0.$$

Ainsi,

$$P^{(n+1)}$$
 est une solution de (E).

b D'après la question précédente et la question 2, on sait que $P^{(n+1)}$ est un polynôme constant.

Donc, nécessairement, $deg(P) \leq n + 1$.

Mise en pratique des résultats précédents, on cherche donc un polynôme P de degré inférieur à $2: P = a_0 + a_1 X + a_2 X^2 \in \mathbb{R}[X]$.

En se rappelant que deux polynômes sont égaux si, et seulement si ils ont les mêmes coefficient, on traduit (E_1) sur ces derniers :

P est solution de $(E_1) \iff P(X+2) - P(X) = X^2$ et P(0) = 0.

On a déjà $a_0 = P(0) = 0$ puis

$$\Leftrightarrow a_{1}(X+2) + a_{2}(X+2)^{2} - (a_{1}X + a_{2}X^{2}) = X$$

$$\Leftrightarrow 2a_{1} + 4a_{2} + (a_{1} + 4a_{2} - a_{1})X + (a_{2} - a_{2})X^{2} = X$$

$$\Leftrightarrow 2a_{1} + 4a_{2} + 4a_{2}X = X$$

$$\Leftrightarrow \begin{cases} a_{0} &= 0 \\ a_{1} + 2a_{2} &= 0 \\ 4a_{2} &= 1 \end{cases} \Leftrightarrow \begin{cases} a_{0} &= 0 \\ a_{1} &= -\frac{1}{2} \\ a_{2} &= \frac{1}{4} \end{cases}$$

D'après 3, c'est la seule solution.

Finalement, l'unique solution de (E_1) est

$$P = \frac{1}{4}X^2 - \frac{1}{2}X = \frac{X^2 - 2X}{4}.$$

Problème 4:

Partie 0: Questions liminaires

 \Leftrightarrow P = $\frac{1}{4}$ X² - $\frac{1}{2}$ X.

 Somme de termes positifs, la suite $\left(\sum_{k=\mathbf{N}}^n |v_k|\right)_{n\geqslant \mathbf{N}}$ est croissante.

De plus, $\forall n \geq N$,

$$\begin{split} & \sum_{k=\mathrm{N}}^n \, |v_k| \leqslant \mathrm{M} \, \sum_{k=\mathrm{N}}^n \, \lambda^k = \mathrm{M} \lambda^\mathrm{N} \, \frac{1-\lambda^{n-\mathrm{N}+1}}{1-\lambda}, \quad (\lambda \neq 1) \\ & \sum_{k=\mathrm{N}}^n \, |v_k| \leqslant \frac{\mathrm{M} \lambda^\mathrm{N}}{1-\lambda}. \quad (0 < \lambda < 1) \end{split}$$

La suite $\left(\sum_{k=\mathbf{N}}^n |v_k|\right)_{n\geqslant \mathbf{N}}$ est donc également majorée, elle converge.

 $\ \, 2$ C'est simplement la traduction avec les O de l'hypothèse précédente sur les v_n :

$$v_n \underset{n \to +\infty}{=} \mathrm{O}\left(\lambda^n\right) \iff \exists\, \mathrm{M} > 0, |v_n| \leqslant \mathrm{M}\,\lambda^n \quad \text{à partir d'un certain rang N}.$$

D'après la question précédente, on conclut encore à la convergence de la suite $\left(\sum_{k=N}^n |v_k|\right)_{n\geqslant N}$.

Commertaires: On vient en fait de prouver et d'admettre en partie comme le demandait l'énoncé un résultat que l'on reverra: « si le terme d'une série est dominée par celui d'une série absolument convergente alors elle converge. »

Partie I

 $\fbox{3}$ \fbox{a} Comme sin admet un DL à tout ordre, il en est de même pour f et au moins à l'ordre 1.

On trouve:

$$f(x) \underset{x \to 0}{=} 1 + \mathrm{o}(x).$$

Comme dans le problème précédent, f continue sur \mathbb{R}^* par quotient de fonctions continues dont le dénominateur ne s'annule pas se prolonge alors par continuité en 0 en posant f(0) = 1.

Commentaires : Maintenant qu'on a vu les DLs cessez de me parler de limite de taux d'accroissement que vous faites toujours sans me préciser la dérivabilité de la fonction en 0 donc toujours aussi faux.

Ce prolongement continue sur \mathbb{R} est de classe \mathscr{C}^1 sur \mathbb{R}^* , dérivable en 0 avec $\tilde{f}'(0) = 0$. Le théorème de prolongement de classe \mathscr{C}^1 permet de conclure :

f est prolongeable en une fonction de classe \mathscr{C}^1 à $\mathbb R$ tout entier.

Commentaires: Voir qu'il s'agit du théorème de prolongement de classe \mathcal{C}^1 à appliquer ne suffit pas. Il faut également savoir énoncer et vérifier toutes ses hypothèses correctement.

b) Suivons l'indication :

Pour tout x > 0, la fonction $\varphi : t \mapsto (x\cos(x) - \sin(x))t^2 - x^2(t\cos(t) - \sin(t))$ est continue sur [0; x] et dérivable sur [0; x].

D'après le théorème de Rolle (appliqué à φ par rapport la variable t),

$$\begin{split} \exists\,c\in]0\,;x[\,,\varphi'(c)=0&\iff 2(x\cos(x)-\sin(x))c+cx^2\sin(c))=0\\ &\iff 2(x\cos(x)-\sin(x))+x^2\sin(c))=0\quad(c\neq0)\\ &\iff \frac{x\cos(x)-\sin(x)}{x^2}=-\frac{\sin(c)}{2}\quad(x\neq0)\\ &\iff f'(x)=-\frac{\sin(c)}{2}. \end{split}$$

© Comme, $\forall c \in \mathbb{R}$, $|\sin(c)| \leq 1$, le résultat découle trivialement de la question précédente pour x > 0.

Comme f'(0) = 0, elle est encore vraie pour $x \ge 0$. L'imparité de f', dérivée d'une fonction paire, fait le reste pour tout $x \in \mathbb{R}$.

Donc, $\forall x \in \mathbb{R}, |f'(x)| \leq \frac{1}{2}$.

od Soit ℓ un point fixe de f, c'est-à-dire tel que $f(\ell) = \ell$. Supposons qu'il existe deux points fixes distincts ℓ_1 et ℓ_2 , avec $\ell_1 < \ell_2$.

D'après le théorème des accroissements finis appliqué à f de classe \mathscr{C}^1 sur $[\ell_1;\ell_2]$, il existe un point $c\in]\ell_1;\ell_2[$ tel que :

$$f'(c) = \frac{f(\ell_2) - f(\ell_1)}{\ell_2 - \ell_1} = \frac{\ell_2 - \ell_1}{\ell_2 - \ell_1} = 1,$$

ce qui est impossible puisque nous avons montré que $|f'(x)| \leq \frac{1}{2}$ pour tout x.

Par conséquent, f ne peut avoir qu'un seul point fixe.

Commerctaires: Personne ne vous demandait de prouver l'existence du point fixe que vous ne serez d'ailleurs pas capables de montrer avant très longtemps. Son existence est inaccessible en prépa.

- ① D'après la question ③ ①, $\exists c_{\ell} \in]0; \ell[\subset]0; 1[\subset]0; \pi[$ tel que $f'(\ell) = -\frac{\sin(c_{\ell})}{2} \neq 0$. Donc $f'(\ell) \neq 0$.

Comme $u_0 = 0$ et $\ell \in]0; 1[, |u_0 - \ell| \le 1 = \frac{1}{2^0}$ donc la propriété est vraie pour n = 0.

Supposons qu'il existe un entier n tel que celle-ci soit vraie.

En appliquant l'inégalité des accroissements finis à $[u_n\,;\ell]$ ou $[\ell\,;u_n]$, on obtient encore :

$$|u_{n+1} - \ell| = |f(u_n) - f(\ell)| \leqslant \frac{1}{2} \, |u_n - \ell| \leqslant \frac{1}{2^{n+1}}.$$

La propriété est donc héréditaire. Initialisée à partir de n=0, elle l'est pour tout $n\in\mathbb{N}$:

$$\forall\,n\in\mathbb{N},\;|u_n-\ell|\leqslant\frac{1}{2^n}.$$

g Il suffit de résoudre l'inéquation

$$\frac{1}{2^n} \leqslant 10^{-3} \iff n \log(2) \geqslant 3 \iff n \geqslant \frac{3}{\log(2)}.$$

On prendra
$$n = \left| \frac{3}{\log(2)} \right| + 1.$$

$$\text{Comme } 0 < \log(1) < \log(2) = \frac{1}{3}\log(8) < \frac{1}{3}\log(10) \simeq 0, \\ 3^+ \text{ alors } \frac{3}{\log(2)} \simeq \frac{3}{0, 3^+} \simeq 10^-.$$

De tête, on pourrait prendre n=10 ce que confirme la calculatrice pour avoir, au moins, une approximation de ℓ à 10^{-3} près.

Partie II

Comme $|f'(\ell)| < 1$, il existe $\eta \in]0; 1[$ tel que $|f'(\ell)| \leq \eta < 1$.

Par continuité de f', il existe donc r>0 tel que $\forall\,x\in\]\ell-r\,;\ell+r[,\,|f'(x)|\leqslant\eta.$

Comme ℓ est intérieur à I, quitte à réduire r, on peut supposer $|\ell-r;\ell+r|\subset I$.

D'après l'inégalité des accroissements finis, f est η -lipschitzienne sur $]\ell - r$; $\ell + r[$.

Enfin, $\forall x \in]\ell - r; \ell + r[$, $|f(x) - \ell| \leq \eta |x - \ell| < r$ entraine la stabilité de $]\ell - r; \ell + r[$ par f ce qui finit de répondre à la question.

- Le même raisonnement que celui mené à la question 3 f avec $|f'(\ell)| \leq \eta$ montre qu'il existe un rang à partir duquel $|u_n \ell| \leq |u_0 \ell| \; \eta^n$. C'est exactement dire que $u_n \ell = O(\eta^n)$.
 - Comme $\lim_{n\to +\infty}u_n=\ell$ et f de classe \mathscr{C}^2 dans un voisinage de ℓ , d'après le théorème de Taylor-Young :

$$\begin{split} f(u_n) &\underset{n \to +\infty}{=} f(\ell) + f'(\ell) \left(u_n - \ell \right) + \mathcal{O} \left((u_n - \ell)^2 \right) \\ u_{n+1} &\underset{n \to +\infty}{=} \ell + f'(\ell) \left(u_n - \ell \right) + \mathcal{O} \left((u_n - \ell)^2 \right) \\ u_{n+1} - \ell &\underset{n \to +\infty}{=} f'(\ell) \left(u_n - \ell \right) + \mathcal{O} \left((u_n - \ell)^2 \right) \\ \frac{u_{n+1} - \ell}{f'(\ell) \left(u_n - \ell \right)} &\underset{n \to +\infty}{=} 1 + \mathcal{O} \left((u_n - \ell) \right) \quad ((u_n)_{n \in \mathbb{N}} \text{ non stationnaire}) \end{split}$$

Avec $u_n - \ell \underset{n \to +\infty}{=} \mathrm{O}\left(\eta^n\right)$, on obtient $a_n \underset{n \to +\infty}{=} 1 + \mathrm{O}\left(\eta^n\right)$.

 $\text{ Comme } a_n \underset{n \to +\infty}{=} 1 + \mathcal{O}(\eta^n), \, \exists \, \mathcal{M} > 0 \text{ tel que } |a_n - 1| \leqslant \mathcal{M}\eta^n.$

Comme $0 < \eta < 1$, $\lim_{n \to +\infty} |a_n - 1| = \lim_{n \to +\infty} \eta^n = 0$ i.e. la suite $(a_n)_{n \in \mathbb{N}}$ converge vers 1 strictement positif.

Il existe donc un rang N à partir duquel la suite $(a_n)_{n\in\mathbb{N}}$ est strictement positive.

d Comme $a_n = 1 + O(\eta^n)$, alors $|\ln(a_n)| = O(\eta^n)$ avec $0 < \eta < 1$.

D'après $\boxed{2}$, la suite $\left(\sum_{k=\mathbf{N}}^n |\ln(a_k)|\right)_{n\geqslant \mathbf{N}}$ puis $\left(\sum_{k=\mathbf{N}}^n \ln(a_k)\right)_{n\geqslant \mathbf{N}}$ convergent

Correction Devoir surveillé n° 5

e D'après la question précédente, la suite $\left(\sum_{k=N}^n \ln(a_k)\right)_{n\geqslant N}$ converge donc il existe un réel S tel que :

$$\begin{split} \sum_{k=\mathrm{N}}^n \ln(a_k) &\underset{n \to +\infty}{=} \mathrm{S} + \mathrm{o}\left(1\right). \\ \sum_{k=\mathrm{N}}^n \ln\left(\frac{u_{k+1} - \ell}{f'(\ell)\left(u_k - \ell\right)}\right) &\underset{n \to +\infty}{=} \mathrm{S} + \mathrm{o}\left(1\right). \\ \ln\left(\prod_{k=\mathrm{N}}^n \left(\frac{u_{k+1} - \ell}{f'(\ell)\left(u_k - \ell\right)}\right)\right) &\underset{n \to +\infty}{=} \mathrm{S} + \mathrm{o}\left(1\right). \\ \ln\left(\frac{1}{f'(\ell)^{n-\mathrm{N}+1}} \prod_{k=\mathrm{N}}^n \left(\frac{u_{k+1} - \ell}{u_k - \ell}\right)\right) &\underset{n \to +\infty}{=} \mathrm{S} + \mathrm{o}\left(1\right). \end{split}$$

En reconnaissant un produit télescopique; on a :

$$\ln\left(\frac{1}{f'(\ell)^{n-\mathrm{N}+1}}\,\frac{u_{n+1}-\ell}{u_{\mathrm{N}}-\ell}\right) \underset{n \to +\infty}{=} \mathrm{S} + \mathrm{o}\left(1\right).$$

En composant par l'exponentielle,

$$\begin{split} \frac{1}{f'(\ell)^{n-\mathrm{N}+1}} & \frac{u_{n+1} - \ell}{u_{\mathrm{N}} - \ell} \underset{n \to +\infty}{=} \mathrm{e}^{\mathrm{S} + \mathrm{o}(1)}. \\ & u_{n+1} - \ell \underset{n \to +\infty}{=} f'(\ell)^{n-\mathrm{N}+1} \left(u_{\mathrm{N}} - \ell \right) \left(\mathrm{e}^{\mathrm{S}} \big(1 + \mathrm{o} \left(1 \right) \big) \right). \\ & u_{n+1} - \ell \underset{n \to +\infty}{=} f'(\ell)^{n+1} \underbrace{\frac{\left(u_{\mathrm{N}} - \ell \right) \mathrm{e}^{\mathrm{S}}}{f'(\ell)^{\mathrm{N}}}}_{=\alpha \in \mathbb{R}^*} \left(1 + \mathrm{o} \left(1 \right) \right). \end{split}$$

En réindexant, on a montré l'existence d'un réel $\alpha \in \mathbb{R}^*$ pour lequel :

$$u_n - \ell \underset{n \to +\infty}{\sim} \alpha f'(\ell)^n$$
.