Dimension finie

1	Soient E un \mathbb{K} -ev, $n \in \mathbb{N}^*$ et $(x_1, x_2, \cdots, x_n) \in \mathbf{E}^n$.										
	À quelle condition dit-on que la famille (x_1,x_2,\cdots,x_n) est $\mathit{li\acute{e}e}?$										
2	Soient E un K-ev, $n\in\mathbb{N}^{\star}$ et $(x_{1},x_{2},\cdots,x_{n})\in\mathbf{E}^{n}.$										
	À quelle condition dit-on que la famille (x_1,x_2,\cdots,x_n) est $\mathit{libre}?$										
3	Compléter lorsque que c'est possible :										
	a Toute sous-famille d'une famille libre est b Toute sur-famille d'une famille libre est c Toute sous-famille d'une famille liée est d Toute sur-famille d'une famille liée est										
4	Soit E un K-ev.										
	À quelle condition E est-il de dimension finie?										
5	Qu'appelle-ton base d'un espace vectoriel?										

6	Soient	E un	K-ev	et	$(u_1, \dots,$	(u_p)	$\in \mathbf{E}^p$	une	famille	ď	'éléments	de	Ε.
---	--------	------	------	----	----------------	---------	--------------------	-----	---------	---	-----------	----	----

Qu'appelle-t-on rang de $(u_1, \dots, u_p) \in \mathbf{E}^p$?

.....

Soient F et G deux sous-espaces vectoriels de E,
$$(f_1, \dots, f_p) \in F^p$$
 et $(g_1, \dots, g_q) \in G^q$ des bases respectives de F et G.

À quelle condition $(f_1,\ldots,f_p,g_1,\ldots,g_q)$ est-elle une base de E?

.....

8 Compléter :

Soient F et G deux sous-espaces vectoriels d'un K-ev de dimension finie E. Alors :

$$\begin{split} \textit{(i)}. \ F \oplus G = E \iff \textit{(ii)}. \ \begin{cases} F \cap G = \{0\} \\ \dim(F) + \dim(G) = \dim(E) \end{cases} \\ \iff \textit{(iii)}. \ \begin{cases} F + G = E \\ \dim(F) + \dim(G) = \dim(E) \end{cases}. \end{aligned}$$

9 Soient
$$F = \{(x, y) \in \mathbb{R}^2, \ 2x + y = 0\}$$
 et $G = \{(x, y) \in \mathbb{R}^2, \ x - y = 0\}.$

- (a) Montrer que F et G sont des sev de \mathbb{R}^2 et en donner une base.

$$\forall (x,y) \in \mathbb{R}^2, \quad (x,y) \in \mathcal{F} \iff 2x+y=0 \\ \iff y=-2x \\ \iff (x,y)=(x,-2x) \\ \iff (x,y) \in \mathbb{R}(1,-2)$$

Donc
$$F = \text{vect}\left(\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right)$$
.

On en déduit que :

- F est un sev de E;
- ((1,-2)) est une base de F i.e. $\dim(F)=1$.

De même,

-
$$G = \text{vect}\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right)$$
 est un sev de E ;

- ((1,1)) est une base de G et donc $\dim(G)=1$.

$$-\ F$$
 et G sont en somme directe. En effet,

$$\forall (x,y) \in \mathbb{R}^2, \quad (x,y) \in \mathcal{F} \cap \mathcal{G} \iff \begin{cases} 2x+y=0 \\ x-y=0 \end{cases}$$

$$\iff \begin{cases} x=0 \\ y=0 \end{cases}$$

$$\iff (x,y)=(0,0)$$

$$\label{eq:condition} \begin{split} & \mbox{\mathcal{D}'où } \ F\cap G=\{(0,0)\}.\\ & - \ \mbox{\mathcal{D}e plus, $\dim(F)+\dim(G)=2=\dim\mathbb{R}^2$.} \end{split}$$
 On conclut que $\mathbb{R}^2=F\oplus G.$