Applications linéaires

Une seule réponse exacte par question.

EN DIMENSION QUELCONQUE

1	Soit u un endomor	phisme d'un	espace vectoriel I	E. Quelle pi	ropriété est tou	ijours vérifiée?

- $\Box \operatorname{Im} u \cap \operatorname{Im} u^2 = \{0\}$ $\Box \operatorname{Im} u + \operatorname{Im} u^2 = \operatorname{E}$

Si u, v sont deux endomorphismes de E tels que ker $u \subset \ker v$ alors pour tout x dans E,

Soit F un sous-espace vectoriel de E, u un endomorphisme de E et v la restriction de u à F.

Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. A quelle condition la restriction de u à F est-elle injective?

- \bigcirc si ker u = F
- \bigcirc si F $\not\subset$ ker u

Soit g non nulle dans $\mathcal{L}(E)$. Laquelle des applications suivantes de $\mathcal{L}(E)$ dans $\mathcal{L}(E)$ n'est pas linéaire?

- $\begin{array}{c} \text{ a } \square \ f \mapsto g \circ f \\ \text{ b } \square \ f \mapsto f \circ g \end{array}$

- $\begin{array}{c}
 \bullet & \square & f \mapsto f + g \\
 \bullet & \square & f \mapsto g \circ f \circ g
 \end{array}$

Soit u un endomorphisme de E et x un vecteur de E tel que $u(x) = \lambda x$ avec $\lambda \in \mathbb{R}$. Alors pour $n \in \mathbb{N}$, $u^n(x)$ vaut :

- $\begin{array}{c} \text{a} \quad \Box \quad \lambda x^n \\ \text{b} \quad \overrightarrow{\Delta} \quad \lambda^n x \end{array}$

 $\boxed{7}$ Si u est un endomorphisme de E, on a toujours

- $\Box \ker u = \ker u^2$ $\Box \ker u \cap \ker u^2 = \{0\}$

Si u, v sont deux endomorphismes de E tels que $v = u \circ v$, alors

- $\Box \operatorname{Im} v \subset \ker u$ $d \ \ \square \ u|_{\operatorname{Im} v} = \operatorname{Id}$
- 19 Laquelle des applications suivantes est un projecteur de \mathbb{R}^2 ?

- Soit $u \in \mathcal{L}(E)$. Si $u^2 = Id$, que vaut $(u^2 + u)^2$?

- \bigcirc \square 2Id + 2u \bigcirc \square $Id + u^2$
- Lequel des ensembles suivants de $\mathcal{L}(E)$ n'est pas stable par l'application $f \mapsto f \circ f$?
 - ⓐ □ l'ensemble des projecteurs
 - □ l'ensemble des symétries
 - o I'ensemble des endomorphismes non nuls
 - d □ l'ensemble des homothéties

EN DIMENSION FINIE

Dans toutes les questions qui suivent, sauf mention contraire, E est un R-espace vectoriel de dimension finie $n \ge 1$.

- Soit $v \in \mathcal{L}(E)$ et $u \in \mathcal{GL}(E)$. Le rang de $u \circ v \circ u^{-1}$ est égal à

- $\Box \operatorname{rg} u$ $\Box \operatorname{rg} u + \operatorname{rg} v + \operatorname{rg} v^{-1}$
- Soit u un endomorphisme de E de rang r. Quel est le rang maximal que peut avoir u^2 ?
 - \bigcirc \square r^2
- (b) □ 2r
- \bigcirc \square r
- $\square r-2$

- 3 Si E est de dimension n, la dimension de $\mathcal{L}(E)$ est
 - (a) $\sqrt{n^2}$
- \bigcirc \square n
- \bigcirc \square 2^n
- \bigcirc \square 2n

Soit (e_1, e_2) la base canonique de \mathbb{R}^2 .

Combien y a-t-il d'endomorphismes de \mathbb{R}^2 qui échangent e_1 et e_2 ?

- a aucun
- (b) **☑** 1
- **c** □ 2
- (d) une infinité
- Soient f, g deux endomorphismes de E. Laquelle des conditions suivantes implique que $\operatorname{rg} f = \operatorname{rg} g$?

- 6 Soit f une forme linéaire sur E et u dans $\mathcal{L}(E)$.

Laquelle des applications suivantes est aussi une forme linéaire sur E?

	\bigcirc \checkmark $f \circ u$	$\Box u \circ f$	$\Box f \circ f$	$\Box f \times f$			
7	un endomorphisment nul?						
	\bigcirc \square si A est libre \bigcirc \square si A est générati	rice	o □ si A n'est pas lil o ☑ si A n'est pas ge				
Soient $u,v\in\mathcal{L}(\mathbf{E}).$ Si $\mathrm{Im}u=\mathrm{Im}v,$ que peut-on en déduire?							
	$ \begin{array}{c} $		$ \begin{array}{c} $	ectives			
9	Soit ϕ une forme linéaire non nulle de \mathbb{R}^2 dans \mathbb{R} . Alors ϕ est nécessairement						
	a ☐ injective b ☑ surjective		\bigcirc \square constante \bigcirc \square un projecteur				
Soient $u \in \mathcal{L}(E)$. Laquelle des propositions suivantes est fausse?							
11	 a □ si u est injectif, alors u est bijectif. b □ s'il existe v ∈ L(E) tel que v ∘ u = Id_E, alors u est bijectif c □ si u + Id_E est bijectif, alors u est bijectif d □ si u² est bijectif, alors u est bijectif Soient u, v ∈ L(E). Laquelle des propriétés suivantes implique que u = 0? 						
_	$\begin{array}{c} \text{a} \square \ u^2 = 0 \\ \text{b} \square \ u \circ v = 0 \text{ et } v \neq \end{array}$	0		y = E			
12							
	\bigcirc \square $2n^2$	$ \bigcirc $ $ \square $ $ n^4 $	\bigcirc \square 2^{2^n}	\bigcirc			
13	Soit u un endomorphisme de E et F un sous-espace vectoriel de E tel que $u(F) = F$. Alo a \square Im $u = F$ b \square la restriction de u à F est l'identité c \square la restriction de u à F est un automorphisme de F d \square F \subseteq ker $(u - Id_E)$						
14	Soient f , g deux endomorphismes de E tels que $g \circ f = 0$. Alors						
	$ \Box f = 0 \text{ ou } g = 0 $ $ \Box \text{ rg } f \leqslant \text{rg } g $						

Quelle est la dimension de l'espace des polynômes réels P de degré inférieur ou égal à 4 tels que $\int_0^1 P = 0$?

(d) **4**

- (a) \Box 0 (b) □ 1 □ 3 Soient $u, v \in \mathcal{L}(E)$. On suppose que $\operatorname{rg}(v \circ u) = \operatorname{rg} u$. Alors [17] Soit u un endomorphisme de E et v la restriction de u à Im u. A quelle condition v est-il un isomorphisme de $\operatorname{Im} u$ sur lui-même?
- a □ c'est toujours le cas \bigcirc I lorsque Im u et ker u sont supplémentaires \bigcirc \square lorsque $\ker u = \operatorname{Im} u$ \bigcirc lorsque u n'est pas nul
- Soient e_1, \dots, e_p des vecteurs de E. On suppose que u est un endomorphisme de E qui vérifie $u(e_1)=e_2,\,u(e_2)=e_3,\,\dots,\,u(e_{p-1})=e_p$ et $u(e_p)=e_1.$ Laquelle des conditions suivantes permet de dire que u est bijectif?
 - $\begin{array}{c} \text{ a } & \square \ p \geqslant \dim \mathbf{E} \\ \text{ b } & \square \ p = \dim \mathbf{E} \end{array}$ $\boxdot (e_1, \dots, e_p) \text{ est libre }$ $\boxdot (e_1, \dots, e_p) \text{ est génératrice }$
- Quelle est la dimension de l'espace des polynômes réels P de degré inférieur ou égal à n tels que P(0) = P(1)?
 - \bigcirc \square n/2 \bigcirc \square n \square n-1(d) \Box 1

Index

```
Combinaison
    linéaire
       de séries convergentes, 7
Condition
    nécessaire, 8
    suffisante, 23
Critère
    de D'Alembert, 26
    de divergence, 8
    spécial des séries alternées, 24
Fonction
    zêta, 15
Leibniz, 24
Méthode
    Comparaison série-intégrale, 13
    Utiliser les critères de comparaison, 12, 23
    Utiliser les séries de Riemann, 16
Nature
    d'une série, 3
Paradoxe
    d'Achille, 1
Reste
    d'une série, 3, 24
Somme
    d'une série, 2
    partielle, 2
Série
    absolument convergente, 22
    alternée, 24
    arithmétique, 4
    convergente, 2
    de Bertrand, 15
    de Riemann, 14
    divergente, 3
      grossièrement, 8
    exponentielle, 6
    géométrique, 4
    harmonique, 4
      alternée, 25
    semi-convergente, 24
    télescopique, 5
    à terme positif, 9
Terme général
    d'une série, 2, 24
Théorème
    d'encadrement, 6, 20, 21, 25
    de la limite monotone, 9
```

Zénon d'Élée, 1