Applications linéaires et intégration

Exercice | : On considère l'application f définie par $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$

$$(x;y;z) \longmapsto \begin{pmatrix} -2x+y+z \\ -5x+2y+3z \\ -2x+y+z \end{pmatrix}.$$

- 1 a Justifier que f est un endomorphisme de \mathbb{R}^3 .
 - $^{\mathbf{b}}$ Déterminer $\ker(f)$ et en donner une base; f est-il injectif?
 - \bigcirc Déterminer Im (f) et en donner une base; f est-il surjectif?
- Construire un supplémentaire S de ker (f) dans \mathbb{R}^3 (justifier).
 - b Soit s la symétrie de \mathbb{R}^3 par rapport à $\ker(f)$ parallèlement à S. Déterminer l'expression de s(x,y,z) pour tout $(x,y,z) \in \mathbb{R}^3$.
- Soit $(x,y,z) \in \mathbb{R}^3$. En remarquant que $f(x,y,z) = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ pour une certaine matrice A

à préciser, calculer $f^2(x,y,z)$ et $f^3(x,y,z)$.

En déduire $f^k(x, y, z)$ pour tout $k \in \mathbb{N}$.

- b Déterminer $\ker(f^2)$ et $\operatorname{Im}(f^2)$ (on en donnera des bases).
- \bigcirc Que valent les suites $(\dim\ker\left(f^{k}\right))_{k\in\mathbb{N}}$ et $(\dim\operatorname{Im}\left(f^{k}\right))_{k\in\mathbb{N}}$?
- On pose $g = f^2$. Que vaut g^2 ?

En déduire la nature géométrique de q et ses éléments caractéristiques.

Exercice 2 : Pour tout $x \in \mathbb{R}$, on pose $\mathrm{F}(x) = \int_x^{3x} \frac{\mathrm{d}t}{\sqrt{t^2 + t + 1}}$.

- 1 Justifier l'existence de F(x) pour tout réel x.
- Montrer que F est de classe \mathscr{C}^{∞} sur \mathbb{R} pour exprimer F'(x) pour tout $x \in \mathbb{R}$.

Étudier la monotonie de F sur $\mathbb R$ (dresser le tableau de variations, sans les limites à ce stade).

- - (a) Soit la fonction $\varphi \colon \mathbb{R} \to \mathbb{R}, \ t \mapsto \frac{t}{\sqrt{t^2 + t + 1}}$. Donner les variations de φ sur \mathbb{R} .
 - $\label{eq:condition} \mbox{$\stackrel{}{$}$} \mbox{ Établir l'encadrement } \forall \, x>0, \ \, \varphi(x) \ln 3 \leqslant {\rm F}(x) \leqslant \varphi(3x) \ln 3.$
 - \odot Conclure sur la limite de F en $+\infty$ et compléter le tableau de variations précédent.
- Étude de la limite en $-\infty$. Adapter les questions précédentes pour déterminer la limite de F en $-\infty$.
- Déterminer le $\mathrm{DL}_2(0)$ de F et en déduire une équation de la tangente à la courbe en 0 ainsi que sa position relative avec la courbe.