Variables aléatoires

Un employé d'un centre d'appels doit joindre N personnes.

- Le premier jour, il appelle ces N personnes, chacune ayant une probabilité $p \in]0;1[$ de répondre, et ce de façon indépendante des autres personnes. On note alors X_1 le nombre de personnes ayant répondu ce premier jour.
- Le deuxième jour, l'employé rappelle tous ceux qui n'ont pas répondu à son premier appel, mais ne rappelle pas ceux qui ont déjà répondu le premier jour. On suppose que la probabilité p de répondre est inchangée. On note alors X₂ le nombre de personnes ayant répondu ce deuxième jour.
- L'employé, voulant suivre les directives du centre d'appels, est tenace : il rappelle le troisième jour tous ceux qui n'ont pas répondu lors des deux jours précédents et ainsi de suite...
- Il rappelle donc le jour n toutes les personnes n'ayant pas répondu les (n-1) jours précédents. La probabilité de répondre est toujours de p pour chaque personne, et le fait de répondre est indépendant des autres. On note \mathbf{X}_n le nombre de personnes ayant répondu le jour n.
- ullet Enfin, on note \mathbf{Z}_n le nombre total de personnes qui ont pu être jointes durant les n premiers jours.

On supposera que les variables aléatoires sont toutes définies sur un même espace probabilisé (Ω, \mathbb{P}) .

Partie A. Les deux premiers jours

- A1. (a) Reconnaître la loi suivie par X_1 (justifier).
 - $^{\text{b}}$ En déduire l'ensemble des valeurs $X_1(\Omega)$ ainsi que l'espérance et la variance de X_1 .
- A2. Soit $i \in [0; N]$.
 - $\ ^{\text{\ \ a}}$ Sachant (X $_1=i),$ quelles sont les valeurs prises par X $_2$?
 - En déduire la loi conditionnelle de X_2 sachant $(X_1 = i)$ en donnant les valeurs $\mathbb{P}(X_2 = j \mid X_1 = i)$ pour tout $j \in [0, N]$.
 - \odot Conclure en donnant la loi du couple (X_1, X_2) .

Partie B. Un cas particulier des deux premiers jours.

On suppose dans cette partie que N=2 et $p=\frac{1}{2}$. On donne le tableau décrivant la loi de (X_1,X_2) ci-dessous :

$\boxed{\mathbb{P}(\mathbf{X}_1=i,\mathbf{X}_2=j)}$		j		
		0	1	2
i	0	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$
	1	λ	λ	0
	2	λ	0	0

- B1. Que vaut λ ?
- B2. Par un exemple de calcul de probabilité (qui ne renvoie pas la valeur 0), vérifier la cohérence de ce tableau avec le résultat obtenu en ().

- B3. Déterminer la loi de X_2 en justifiant soigneusement (un calcul littéral <u>et</u> numérique est attendu).
- B4. Les variables aléatoires X_1 et X_2 sont-elles indépendantes?
- B5. Calculer $\mathbb{E}(X_2)$ et $\mathbb{V}(X_2)$.

Partie C. Les prémices de la loi de Z_n .

On revient au cas général où $N \in \mathbb{N}^*$ et $p \in [0; 1[$.

- C1. Si $n \in \mathbb{N}^*$, exprimer \mathbf{Z}_n en fonction des \mathbf{X}_k .
- C2. Soit $k\geqslant 2$. Calculer $\mathbb{P}(\mathbf{X}_k=0\mid \mathbf{X}_1=0,\dots,\mathbf{X}_{k-1}=0).$
- C3. En déduire que $\mathbb{P}(\mathbf{Z}_n=0)=(1-p)^{n\mathbf{N}}$ pour tout $n\in\mathbb{N}^*.$
- C4. Que vaut $\lim_{n\to+\infty} \mathbb{P}(\mathbf{Z}_n=0)$?

Partie D. Loi de Z_n .

D1. À l'aide de la question (b), montrer que pour tout $(i, j) \in [0, N]^2$,

$$\mathbb{P}(\mathbf{Z}_2=j\mid \mathbf{Z}_1=i) = \begin{cases} \binom{\mathbf{N}-i}{j-i} p^{j-i} (1-p)^{\mathbf{N}-j} & \text{si } j\geqslant i \\ 0 & \text{sinon.} \end{cases}$$

D2. Si $j \in [0; N]$, en déduire que :

$$\mathbb{P}(\mathbf{Z}_2=j)=p^j(1-p)^{2\mathbf{N}-2j}\sum_{i=0}^j\binom{\mathbf{N}-i}{j-i}\binom{\mathbf{N}}{i}(1-p)^{j-i}.$$

- D3. Simplifier $\frac{\binom{N-i}{j-i}\binom{N}{i}}{\binom{j}{i}}$.
- D4. En déduire que $\mathbf{Z}_2 \sim \mathscr{B}(\mathbf{N}, p_2)$ où $p_2 = p(2-p)$.

On admet que, pour tout $n \in \mathbb{N}^*$, on a $\mathbf{Z}_n \sim \mathscr{B}(\mathbf{N}, p_n)$ où (p_n) est une suite de réels définie par la relation de récurrence suivante :

$$p_1=p \quad \text{ et } \quad \forall \ n \in \mathbb{N}^*, \quad p_{n+1}=(1-p)p_n+p.$$

- D5. Déterminer une expression de p_n en fonction de p et de n.
- D6. Retrouver le résultat de la question (C4.).