Déterminant

Nom:	Prénom:
1 On considère les matrices :	
$A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$	$ \begin{array}{c} 3 \\ 3 \\ 3 \end{array} , B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} $
a En justifiant par une phrase courte,	claire, concise et efficace, calculer $\det(A)$ et $\det(B)$
(b) Avec sobriété, les endomorphismes	associés à A et B sont-ils bijectifs?
O Dans la même concision donner un	e base de $\ker(A)$ et $\operatorname{Im}(A)$.
d Toujours avec clarté, donner une ba	ase de $\ker(B)$ et $\operatorname{Im}(A)$.

2 5	Soit D l'application définie sur \mathbb{R} par $\mathrm{D}(x)=\begin{vmatrix} 1+x & 1 & 2\\ 2+x & 2 & 3\\ 3+x & 3 & 4 \end{vmatrix}$.
	(a) Calculer $\begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \end{vmatrix}$.
	Calcular D(0)
	$lackbox{b}$ Calculer D(0).
	\bigcirc En utilisant les propriétés d'un déterminant donner $\mathrm{D}'(x)$.
	En utilisant les proprietes à un determinant donner D (x).
	••••••

3	Calculer	$\begin{vmatrix} a+b \\ a \\ \vdots \\ a \end{vmatrix}$	$\begin{array}{c} a \\ a+b \\ \ddots \\ \dots \end{array}$	 ·. a a	$\begin{bmatrix} a \\ \vdots \\ a \\ i + b \end{bmatrix}$				
	• • • • • • • •					 	 	 	
	• • • • • • • •					 	 	 	
	••••	• • • • • • •				 	 	 	

4	Calculer $V_3 = \begin{vmatrix} 1 & a_1 & a_1^2 \\ 1 & a_2 & a_2^2 \\ 1 & a_3 & a_3^2 \end{vmatrix}$.
	······································