

# Déterminant

n mathématiques, le déterminant est une valeur qu'on peut associer aux matrices ou aux applications linéaires en dimension finie.

e déterminant peut se concevoir comme une généralisation à l'espace de dimension n de la notion d'aire ou de volume orientés. Sur les exemples les plus simples, ceux de la géométrie euclidienne en dimension 2 ou 3, il s'interprète en termes d'aires ou de volumes, et son signe est relié à la notion d'orientation.

I fut initialement introduit en algèbre, pour résoudre un système d'équations linéaires comportant autant d'équations que d'inconnues. Il se révèle être un outil très puissant dans de nombreux domaines. Il intervient ainsi dans l'étude des endomorphismes, la recherche de leurs valeurs propres, les propriétés d'indépendance linéaire de certaines familles de vecteurs, mais aussi dans le calcul différentiel, par exemple dans la formule de changement de variables dans les intégrales multiples.

omme pour de nombreuses opérations, le déterminant peut être défini par une collection de propriétés (axiomes) qu'on résume par le terme « forme multilinéaire alternée ». Cette définition permet d'en faire une étude théorique complète et d'élargir ses champs d'applications. Nous n'irons pas jusque là et nous contenterons d'en donner une première approche, quelques premières applications et quelques premiers calculs.

#### Contenu

| I. Déterminar                       | nt d'une matrice carrée                                                  | . 5       |    |
|-------------------------------------|--------------------------------------------------------------------------|-----------|----|
| I.1                                 | Généralités                                                              |           | 7  |
| I.2                                 | Multilinéarité                                                           |           | 10 |
| I.3                                 | Antisymétrie                                                             |           | 11 |
| I.4                                 | Opérations élémentaires                                                  |           | 11 |
| I.5                                 | Matrice inversible                                                       |           | 13 |
| I.6                                 | Produit de matrices                                                      |           | 14 |
| I.7                                 | Transposée                                                               |           | 15 |
| II. Calculs de déterminants         |                                                                          | 17        |    |
| II.1                                | Développement suivant une ligne ou une colonne                           |           | 17 |
| II.2                                | Déterminant d'une matrice $3 \times 3$                                   |           | 19 |
| III. Déterminant d'un endomorphisme |                                                                          | <b>20</b> |    |
| III.1                               | Déterminant d'une famille de $n$ vecteurs dans une base en dimension $n$ |           | 20 |
| III.2                               | Déterminant d'un endomorphisme en dimension finie                        |           | 22 |
| IV. Applications                    |                                                                          | <b>24</b> |    |
| IV.1                                | Systèmes linéaires                                                       |           | 24 |
| IV.2                                | Équation des hyperplans vectoriels                                       |           | 25 |

Dans ce chapitre,  $\mathbb{K}$  désigne  $\mathbb{R}$  ou  $\mathbb{C}$  et n sera un entier naturel supérieur ou égal à 2.

## INTRODUCTION

On se place dans  $\mathbb{R}^2$  muni de sa base canonique que l'on note  $(\vec{i}; \vec{j})$ .

Soit  $\vec{u}$  et  $\vec{v}$  deux vecteurs de  $\mathbb{R}^2$ , et  $\mathcal{P}_{\vec{u},\vec{v}}$  le parallélogramme porté par les vecteurs  $\vec{u}$  et  $\vec{v}$  :

$$\mathcal{P}_{\overrightarrow{u},\overrightarrow{v}} = \Big\{\alpha\overrightarrow{u} + \beta\overrightarrow{v} \, / \, \alpha, \, \beta \in [0\,;1] \,\Big\}.$$

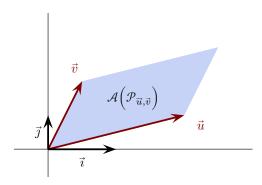


Figure XXXIII.1 – Aire algébrique d'un parallélogramme porté par deux vecteurs  $\vec{u}$  et  $\vec{v}$ .

On note  $\mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u},\overrightarrow{v}}\Big)$  l'aire algébrique de  $\mathcal{P}_{\overrightarrow{u},\overrightarrow{v}}$  c'est-à-dire que l'aire de  $\mathcal{P}_{\overrightarrow{u},\overrightarrow{v}}$  est comptée :

- positivement si une mesure de l'angle  $(\vec{u}; \vec{v})$  appartient  $[0; \pi]$ .
- négativement si une mesure de l'angle  $(\vec{u}; \vec{v})$  appartient  $[-\pi; 0]$ .

Rappel I: Soient  $\vec{u}$ ,  $\vec{v}$ ,  $\overrightarrow{u_1}$ ,  $\overrightarrow{u_2}$ ,  $\overrightarrow{v_1}$ ,  $\overrightarrow{v_2} \in \mathbb{R}^2$  et  $\lambda \in \mathbb{R}$ , on a les propriétés suivantes :

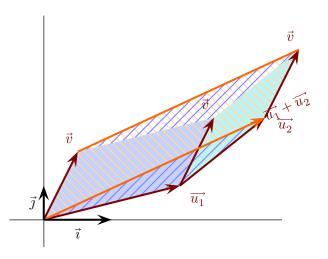
$$\boxed{1} \quad \mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u_1}+\overrightarrow{u_2},\overrightarrow{v}}\Big) = \mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u_1},\overrightarrow{v}}\Big) + \mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u_2},\overrightarrow{v}}\Big).$$

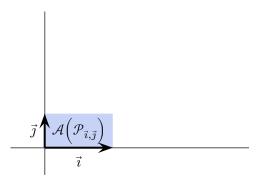
$$\mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u},\overrightarrow{v_1}+\overrightarrow{v_2}}\Big) = \mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u},\overrightarrow{v_1}}\Big) + \mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u},\overrightarrow{v_2}}\Big).$$

$$\boxed{\mathbf{3}} \quad \mathcal{A}\Big(\mathcal{P}_{\vec{v}, \overrightarrow{u}}\Big) = -\mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u}, \vec{v}}\Big)$$

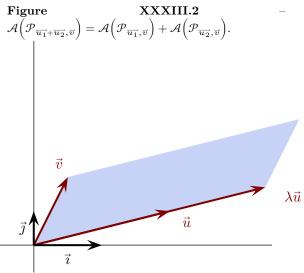
$$4 \quad \mathcal{A}\Big(\mathcal{P}_{\vec{u},\lambda\vec{u}}\Big) = 0 \text{ et } \mathcal{A}\Big(\mathcal{P}_{\lambda\vec{v},\vec{v}}\Big) = 0.$$

Preuve:





 $\mathbf{Figure} \ \mathbf{XXXIII.4} - \mathcal{A}\Big(\mathcal{P}_{\vec{\imath},\vec{\jmath}}\Big) = 1\,(u.a).$ 



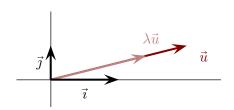


Figure XXXIII.5 –  $\mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u},\lambda\overrightarrow{v}}\Big)=0.$ 

 $\textbf{Figure XXXIII.3} - \mathcal{A}\Big(\mathcal{P}_{\overline{\lambda u}, \overline{v}}\Big) = \lambda\,\mathcal{A}\Big(\mathcal{P}_{\overline{u}, \overline{v}}\Big).$ 

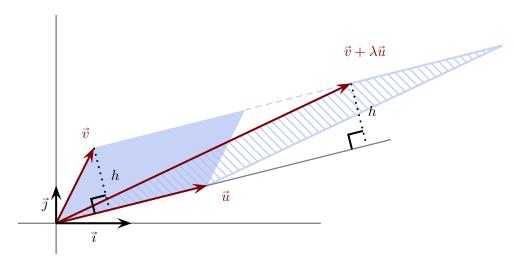
Rappel 2 : Soient  $\vec{u}$  et  $\vec{v}$  deux vecteurs du plan  $\overrightarrow{\mathcal{P}}$  muni d'une base  $(\vec{\imath}, \vec{\jmath})$  orthonormée directe.

$$\det \; (\vec{u}\,;\vec{v}) = \mathcal{A}\big(\mathcal{P}_{\overrightarrow{u},\vec{v}}\big).$$

- une forme bilinéaire.
- antisymétrique : det  $(\vec{u}; \vec{v}) = -\text{det } (\vec{v}; \vec{u})$ .
- $\blacksquare$ alternée : det  $(\vec{u}\,;\vec{u})=\det\,(\vec{v}\,;\vec{v})=0.$

Corollaire O.I: Soient  $\vec{u}, \vec{v} \in \overrightarrow{\mathcal{P}}$  et  $\lambda \in \mathbb{R}$ .

$$\mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u},\overrightarrow{v}+\lambda\overrightarrow{u}}\Big)=\mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u},\overrightarrow{v}}\Big).$$



 $\mathbf{Figure} \ \mathbf{XXXIII.6} - \mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u},\overrightarrow{v}+\lambda\overrightarrow{u}}\Big) = \mathcal{A}\Big(\mathcal{P}_{\overrightarrow{u},\overrightarrow{v}}\Big).$ 

En dimension 3, le déterminant de trois vecteurs  $\vec{u}$ ,  $\vec{v}$  et  $\vec{w}$  représente, de même, le volume au signe près du parallélépipède engendré par les trois vecteurs.

Rappel 3 : Soient x,y et z trois vecteurs de l'espace  $\vec{\mathcal{E}}_3$  muni d'une base  $(\vec{\imath},\vec{\jmath},\vec{k})$  orthonormée directe.

 $\fill \fill \fil$ 

$$\det (x; y; z) = (x \wedge y) \cdot z.$$

- - une forme trilinéaire.
  - antisymétrique : det (x; y; z) = -det (y; x; z) = -det (x; z; y) = -det (z; y; x).
  - lacksquare alternée : det (x;x;z)= det (y;y;z)= det (x;z;z)= det (y;z;z)=0.

### Exercice 1:

- 1 Calculer l'aire du parallélogramme construit sur les vecteurs  $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$  et  $\vec{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ .
- 2 Calculer le volume du parallélépipède construit sur les vecteurs

$$\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \, \vec{v} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \text{ et } \vec{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Montrer que le volume d'un parallélépipède dont les sommets sont des points de  $\mathbb{R}^3$  à coefficients entiers est un nombre entier.

#### Correction:

- $oxed{1}$  L'aire  ${\mathcal A}$  du parallélogramme construit sur les vecteurs  $ec u=\left(egin{array}{c}a\\c\end{array}
  ight)$  et  $ec v=\left(egin{array}{c}b\\d\end{array}
  ight)$  est la valeur absolue du déterminant  $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$  donc  $\mathcal{A} = |ad - bc|$ . Toi on trouve  $\mathcal{A} = abs \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = +5$  où abs désigne la fonction valeur absolue.
- $oxed{2}$  Le volume du parallélépipède construit sur trois vecteurs de  $\mathbb{R}^3$  est la valeur absolue du déterminant de la matrice formée des trois vecteurs. Ici

$$\mathcal{V} = \operatorname{abs} \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 3 & 1 \end{vmatrix} = \operatorname{abs} \left( +1 \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} \right) = 4,$$

où l'on a développé par rapport à la première ligne.

 $oxed{3}$  Si un parallélépipède est construit sur trois vecteurs de  $\mathbb{R}^3$  dont les coefficients sont des entiers alors le volume correspond au déterminant d'une matrice à coefficients entiers. C'est donc un entier.

On va généraliser tout cela en dimension quelconque (finie).



# DÉTERMINANT D'UNE MATRICE CARRÉE

Soit  $A = (C_1 | \dots | C_n) \in \mathcal{M}_n(\mathbb{K})$  une matrice carrée.

On identifiera  $\mathbf{A} \in \mathscr{M}_n(\mathbb{K})$  avec le n-uplet de ses colonnes  $(\mathbf{C}_{1,\mathbf{A}},\dots,\mathbf{C}_{n,\mathbf{A}}) \in \mathbb{K}^n$ .

$$\mathcal{M}_n(\mathbb{K}) \xrightarrow{\simeq} \left( \mathcal{M}_{n,1}(\mathbb{K}) \right)^n$$

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \longmapsto \begin{pmatrix} \mathbf{C}_1 & \cdots & \mathbf{C}_n \\ \begin{pmatrix} a_{1,1} \\ \vdots \\ a_{n,1} \end{pmatrix}, & \cdots, & \begin{pmatrix} a_{1,n} \\ \vdots \\ a_{n,n} \end{pmatrix}$$

En particulier, pour  $f: \mathscr{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$  une application et  $A \in \mathscr{M}_n(\mathbb{K})$ , on notera indifféremment pour des commodités d'écriture,  $f(\mathbf{A})$  ou  $f(\mathbf{C}_{1,\mathbf{A}},\dots,\mathbf{C}_{n,\mathbf{A}})$  la valeur prise par f en  $\mathbf{A}$ .

On dit que:

 $\bullet$  f est multilinéaire si f est linéaire par rapport à chaque vecteur colonne de A :  $\forall\,i\in [\![1\,;n]\!],\,\forall\,\mathbf{C}_1,\,\ldots,\,\mathbf{C}_n,\,\mathbf{C}'\in \mathbb{K}^n,\,\forall\,\lambda\in \mathbb{K},$ 

st multilinéaire si 
$$f$$
 est linéaire par rapport à chaque vecteur colonne de  $\in [1:n]$ ,  $\forall C_1, \ldots, C_n, C' \in \mathbb{K}^n, \forall \lambda \in \mathbb{K}$ , 
$$f(C_1, \ldots, \lambda C_i + C', \ldots, C_n) = \lambda f(C_1, \ldots, C_i, \ldots, C_n) + \ldots$$

$$i^{\text{ème colonne}}$$

$$\ldots f(C_1, \ldots, C', \ldots, C_n).$$

$$i^{\text{ème colonne}}$$

• f est antisymétrique si  $\forall i, j \in [1; n], i \neq j$  alors :

$$f(\mathbf{C}_1,\dots, \begin{array}{ccc} \mathbf{C}_j & ,\dots, & \mathbf{C}_i & ,\dots, \mathbf{C}_n) = -f(\mathbf{C}_1,\dots, & \mathbf{C}_i & ,\dots, & \mathbf{C}_j & ,\dots, \mathbf{C}_n). \\ & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ & i^{\grave{\mathbf{e}}\mathsf{me}} \stackrel{\uparrow}{\mathsf{colonne}} & j^{\grave{\mathbf{e}}\mathsf{me}} \stackrel{\uparrow}{\mathsf{colonne}} & i^{\grave{\mathbf{e}}\mathsf{me}} \stackrel{\uparrow}{\mathsf{colonne}} & j^{\grave{\mathbf{e}}\mathsf{me}} \stackrel{\uparrow}{\mathsf{colonne}} \end{array}$$

• f est  $altern\acute{e}e$  si  $\forall i, j \in [1; n], i \neq j$  alors :

$$f(\mathbf{C}_1,\dots, \mathbf{C}_i \ ,\dots, \mathbf{C}_i \ ,\dots, \mathbf{C}_n) = 0.$$
 
$$\stackrel{\uparrow}{i^{\mathrm{ème}}} \stackrel{\uparrow}{\mathrm{colonne}} \ ,\dots, \mathbf{C}_n) = 0.$$

#### Proposition 1:

- 1 Toute application multilinéaire alternée est antisymétrique.
- 2 Si la caractéristique du corps K est différente de 2, la réciproque est vraie : toute application multilinéaire antisymétrique est alternée.

#### Preuve:

 $oxed{1}$  Considérons une forme multilinéaire alternée. Il suffit de calculer pour i 
eq j :

$$\begin{split} 0 &= f(\mathbf{C}_1, \dots, \ \mathbf{C}_i + \mathbf{C}_j \ , \dots, \ \mathbf{C}_i + \mathbf{C}_j \ , \dots, \mathbf{C}_n) = & f(\mathbf{C}_1, \dots, \mathbf{C}_i, \dots, \mathbf{C}_i + \mathbf{C}_j, \dots, \mathbf{C}_n) \\ & \stackrel{\uparrow}{\text{eime colonne}} \ \stackrel{\uparrow}{\text{eime colonne}} \\ &= \frac{+ f(\mathbf{C}_1, \dots, \mathbf{C}_j, \dots, \mathbf{C}_i + \mathbf{C}_j, \dots, \mathbf{C}_n)}{+ f(\mathbf{C}_1, \dots, \mathbf{C}_i, \dots, \mathbf{C}_j, \dots, \mathbf{C}_n)} \\ &+ f(\mathbf{C}_1, \dots, \mathbf{C}_j, \dots, \mathbf{C}_j, \dots, \mathbf{C}_n) \\ &+ f(\mathbf{C}_1, \dots, \mathbf{C}_j, \dots, \mathbf{C}_j, \dots, \mathbf{C}_n) \\ &+ f(\mathbf{C}_1, \dots, \mathbf{C}_j, \dots, \mathbf{C}_j, \dots, \mathbf{C}_n) \end{split}$$

Done,  $f(\mathbf{C}_1,\dots,\mathbf{C}_i,\dots,\mathbf{C}_j,\dots,\mathbf{C}_n)=-f(\mathbf{C}_1,\dots,\mathbf{C}_j,\dots,\mathbf{C}_i,\dots,\mathbf{C}_n)$  et f est antisymétrique.

[2] Réciproquement, soit f une forme multilinéaire antisymétrique. Pour  $i \neq j$  on calcule, de même,

$$\begin{split} f(\mathbf{C}_1,\dots,\,\mathbf{C}_i-\mathbf{C}_j\;,\dots,\,\mathbf{C}_i-\mathbf{C}_j\;,\dots,\mathbf{C}_n) = & f(\mathbf{C}_1,\dots,\mathbf{C}_i,\dots,\mathbf{C}_i+\mathbf{C}_j,\dots,\mathbf{C}_n) \\ & \stackrel{\uparrow}{\text{elme colonne}} & \stackrel{\uparrow}{\text{plme colonne}} \\ & -f(\mathbf{C}_1,\dots,\mathbf{C}_j,\dots,\mathbf{C}_i-\mathbf{C}_j,\dots,\mathbf{C}_n) \\ = & f(\mathbf{C}_1,\dots,\mathbf{C}_i,\dots,\mathbf{C}_i,\dots,\mathbf{C}_n) \\ & + \overbrace{f(\mathbf{C}_1,\dots,\mathbf{C}_i,\dots,\mathbf{C}_j,\dots,\mathbf{C}_n)} \\ & - \overbrace{f(\mathbf{C}_1,\dots,\mathbf{C}_i,\dots,\mathbf{C}_j,\dots,\mathbf{C}_n)} \\ & + f(\mathbf{C}_1,\dots,\mathbf{C}_i,\dots,\mathbf{C}_j,\dots,\mathbf{C}_n) \end{split}$$

Pour  $C_i = C_j$  on obtient :

$$0 = 2 \times f(\mathbf{C}_1, \dots, \mathbf{C}_i, \dots, \mathbf{C}_i, \dots, \mathbf{C}_n) \iff 0 = f(\mathbf{C}_1, \dots, \mathbf{C}_i, \dots, \mathbf{C}_i, \dots, \mathbf{C}_n).$$

L'application f est donc alternée.

Remarque: Une autre méthode est de remarquer qu'échanger deux colonnes change la valeur de f en son opposé.

Or, cette transformation n'a pas d'effet sur  $f(\mathbf{C}_1,\dots,\mathbf{C}_i,\dots,\mathbf{C}_i,\dots,\mathbf{C}_n)$  qui, égal à son opposé, est donc nul.

# I.1 Généralités

Définition/Théorème 2 (Admis) : Il existe une unique application  $f: \mathcal{M}_n(\mathbb{K}) \longmapsto \mathbb{K}$  vérifiant les trois propriétés suivantes :

- f est multilinéaire.
- 2 f est antisymétrique.

$$f(I_n) = 1.$$

Cette application est appelée  $d\acute{e}terminant$  et notée det :

$$\forall\,\mathbf{A} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \in \mathscr{M}_n(\mathbb{K}),\, \text{on note det}\,(\mathbf{A}) = \begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix} \in \mathbb{K}.$$

La dernière condition peut être vue comme une condition de normalisation.

m- Preuve : Conformément aux indications du programme, nous admettons ce théorème dans le cas général mais...Nous allons toutefois l'établir pour n=2 en raisonnant par analyse/synthèse.

 $\label{eq:Analyse: Supposons qu'une telle fonction } f: \mathscr{M}_2(\mathbb{K}) \longmapsto \mathbb{K} \text{ bilinéaire, antisymétrique et vérifiant } f(\mathbf{I}_2) = 1 \text{ existe et soit } \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{K}).$ 

On note 
$$e_1=\begin{pmatrix}1\\0\end{pmatrix}\in\mathcal{M}_{2,1}(\mathbb{K})$$
 et  $e_2=\begin{pmatrix}0\\1\end{pmatrix}\in\mathcal{M}_{2,1}(\mathbb{K}).$ 

On a :

$$\begin{split} f(\mathbf{A}) &= f\left(\begin{pmatrix} a \\ c \end{pmatrix}, \begin{pmatrix} b \\ d \end{pmatrix}\right) = f\left(a\begin{pmatrix} 1 \\ 0 \end{pmatrix} + c\begin{pmatrix} 0 \\ 1 \end{pmatrix}, b\begin{pmatrix} 1 \\ 0 \end{pmatrix} + d\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) \\ &= f(ae_1 + ce_2, be_1 + de_2) \end{split}$$

Par linéarité sur la première variable,

$$= af(e_1,be_1+de_2) + cf(e_2,be_1+de_2) \\$$

Par linéarité sur la deuxième variable,

$$= abf(e_1,e_1) + adf(e_1,e_2) + bcf(e_2,e_1) + cdf(e_2,e_2)$$

Comme f est alternée,

$$=adf(e_1,e_2)+bcf(e_2,e_1)$$

Par symétrie de  $f_{\rm c}$ 

$$= (ad - bc)f(e_1, e_2)$$

Enfin, la normalisation :

$$= ad - bc$$

L'expression de f étant parfaitement déterminée, on a prouvé l'unicité de f.

Synthèse: Réciproquement, on vérifie sans difficulté que

$$\begin{array}{cccc} f: & \mathscr{M}_2(\mathbb{K}) & \longrightarrow & \mathbb{K} \\ & \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \longmapsto & ad-bc \end{array}$$

est bien une forme bilinéaire, antisymétrique et telle que  $f({\rm I}_2)=1.$ 

Théorème 2 :

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Exercice 2 : Calculer les déterminants suivants :

$$\mathbf{V}_2 = \begin{vmatrix} 1 & a_1 \\ 1 & a_2 \end{vmatrix}$$

# Exercice 3 (Règle de Sarrus) :

- 1 Déterminer l'expression explicite de det pour n=3.
- 2 Applications : Calculer les déterminants suivants :

$$\begin{array}{c|cccc}
a & b & c \\
c & a & b \\
b & c & a
\end{array}$$

Correction: On raisonne encore par analyse-synthèse.

 ${f Analyse}:$  Supposons qu'une telle fonction  $f:\,\mathcal{M}_3(\mathbb{K})\,\longmapsto\,\mathbb{K}$  bilinéaire, symétrique et vérifiant  $f(\mathrm{I}_3)=1$ 

existe et soit 
$$\mathbf{A}=\begin{pmatrix}x_1&y_1&z_1\\x_2&y_2&z_2\\x_3&y_3&z_3\end{pmatrix}\in \mathscr{M}_3(\mathbb{K}).$$

Par linéarité par rapport à la première colonne, on a :

$$f(\mathbf{A}) = x_1 f \begin{pmatrix} 1 & y_1 & z_1 \\ 0 & y_2 & z_2 \\ 0 & y_3 & z_3 \end{pmatrix} + x_2 f \begin{pmatrix} 0 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 0 & y_3 & z_3 \end{pmatrix} + x_3 f \begin{pmatrix} 0 & y_1 & z_1 \\ 0 & y_2 & z_2 \\ 1 & y_3 & z_3 \end{pmatrix}$$

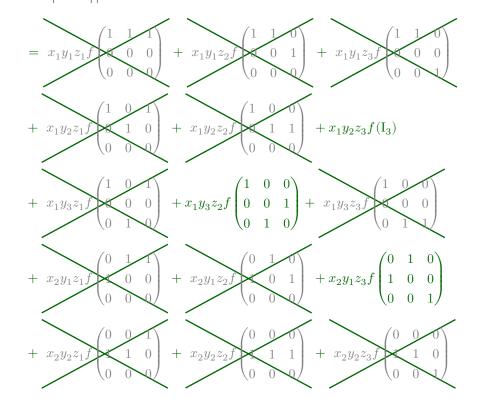
Par linéarité par rapport à la deuxième colonne, on a :

$$= x_1 y_1 f \begin{pmatrix} 1 & 1 & z_1 \\ 0 & 0 & z_2 \\ 0 & 0 & z_3 \end{pmatrix} + x_1 y_2 f \begin{pmatrix} 1 & 0 & z_1 \\ 0 & 1 & z_2 \\ 0 & 0 & z_3 \end{pmatrix} + x_1 y_3 f \begin{pmatrix} 1 & 0 & z_1 \\ 0 & 0 & z_2 \\ 0 & 1 & z_3 \end{pmatrix}$$

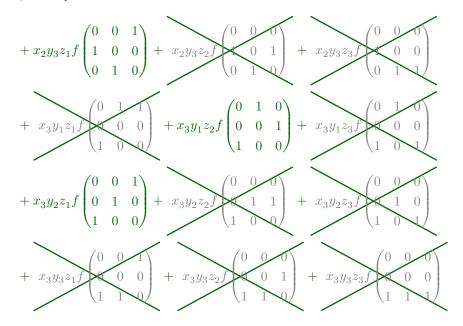
$$+ x_2 y_1 f \begin{pmatrix} 0 & 1 & z_1 \\ 1 & 0 & z_2 \\ 0 & 0 & z_3 \end{pmatrix} + x_2 y_2 f \begin{pmatrix} 0 & 0 & z_1 \\ 1 & 1 & z_2 \\ 0 & 0 & z_3 \end{pmatrix} + x_2 y_3 f \begin{pmatrix} 0 & 0 & z_1 \\ 1 & 0 & z_2 \\ 0 & 1 & z_3 \end{pmatrix}$$

$$+ x_3 y_1 f \begin{pmatrix} 0 & 1 & z_1 \\ 0 & 0 & z_2 \\ 1 & 0 & z_3 \end{pmatrix} + x_3 y_2 f \begin{pmatrix} 0 & 0 & z_1 \\ 0 & 1 & z_2 \\ 1 & 0 & z_3 \end{pmatrix} + x_3 y_3 f \begin{pmatrix} 0 & 0 & z_1 \\ 0 & 0 & z_2 \\ 1 & 1 & z_3 \end{pmatrix}$$

Par linéarité par rapport à la troisième colonne, on a :



C'est un poil long...



Par antisymétrie,

$$=x_1y_2z_3f(\mathbf{I}_3)-x_1y_3z_2f(\mathbf{I}_3)+x_2y_3z_1f(\mathbf{I}_3)-x_2y_1z_3f(\mathbf{I}_3)+x_3y_1z_2f(\mathbf{I}_3)-x_3y_2z_1f(\mathbf{I}_3)\\ =x_1y_2z_3+x_2y_3z_1+x_3y_1z_2-x_1y_3z_2-x_2y_1z_3-x_3y_2z_1. \tag{XXXIII.1}$$

L'expression de f étant parfaitement déterminée, on a prouvé l'unicité de f.

forme bilinéaire, antisymétrique et telle que  $f({\rm I}_3)=1$ .

#### (Hors-Programme)

Pour  $n\geqslant 2$  que lconque, on a l'expression explicite suivante du déterminant d'une matrice  $\mathbf{A}=(a_{i,j})\in \mathscr{M}_n(\mathbb{K})$  :

$$\det\left(\mathbf{A}\right) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \dots a_{\sigma(n),n},$$

où la somme est prise sur l'ensemble des bijections (permutations) de  $\{1, ..., n\}$  dans lui-même, et où  $\varepsilon$  est ce qu'on appelle la signature de  $\sigma$ . Cette formule n'est pas à savoir, mais il est intéressant de retenir que det (A) est une fonction polynomiale en les coefficients de la matrice A.

Un déterminant est ainsi continu, de classe  $\mathcal{C}^k$ ... si les coefficients le sont.

# I.2 Multilinéarité

 $\text{Corollaire 2.I} \ : \ \text{Soient A} = \left( \operatorname{C}_1 | \dots | \operatorname{C}_n \right) \in \mathscr{M}_n(\mathbb{K}) \ \text{et } \operatorname{C}' \in \mathscr{M}_{n,1}(\mathbb{K}).$ 

1 Le déterminant d'une matrice dont une colonne est nulle est nul.

$$\det\left(\mathbf{C}_{1}|\ldots|\lambda\mathbf{C}_{i}+\mathbf{C}'|\ldots|\mathbf{C}_{n}\right)=\lambda\det\left(\mathbf{C}_{1}|\ldots|\mathbf{C}_{i}|\ldots|\mathbf{C}_{n}\right)+\det\left(\mathbf{C}_{1}|\ldots|\mathbf{C}'|\ldots|\mathbf{C}_{n}\right).$$

 $\boxed{\mathbf{3}} \ \, \forall \, \lambda \in \mathbb{K}, \, \det \left( \lambda \mathbf{A} \right) = \lambda^n \det \left( \mathbf{A} \right).$ 

Exemple 1: 
$$\begin{vmatrix} 1 & 1 & 7 \\ 2 & 1 & 8 \\ 3 & 3 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 7 \\ 2 & 1 & 8 \\ 3 & 0 & 9 \end{vmatrix} + 3 \begin{vmatrix} 1 & 0 & 7 \\ 2 & 0 & 8 \\ 3 & 1 & 9 \end{vmatrix}$$

Théorème 3 (Déterminant d'une matrice diagonale):

$$\det \Big( \mathrm{diag}(a_1,a_2,\dots,a_n) \Big) = a_1 a_2 \dots a_n.$$

 $\textbf{Preuve}: \\ \textbf{Il suffit d'utiliser la linéarité du déterminant par rapport à chacune de ses colonnes: }$ 

$$\begin{vmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & a_n \end{vmatrix} = a_1 \begin{vmatrix} 1 & & \\ & a_2 & \\ & & \ddots & \\ & & a_n \end{vmatrix} = a_1 a_2 \begin{vmatrix} 1 & & \\ & 1 & \\ & & \ddots & \\ & & a_n \end{vmatrix} = \dots$$
$$= a_1 a_2 \dots a_n \ \det \left( \mathbf{I}_n \right) = a_1 a_2 \dots a_n.$$

# I.3 Antisymétrie

Corollaire 3.1:

- 1 Le déterminant d'une matrice est changé en son opposé si l'on échange deux colonnes distinctes.
- 2 Le déterminant d'une matrice dont deux colonnes sont égales est nul.
- 3 On ne change pas le déterminant lorsqu'on ajoute à une colonne une combinaison linéaire des autres.
- 4 Si les colonnes de A forment une familles liée, alors le déterminant est nul. En particulier, le déterminant d'une matrice non inversible est nul.

Exercice +: Montrer que  $\begin{vmatrix} 1 & 1 & 9 \\ 1 & 5 & 3 \\ 2 & 8 & 9 \end{vmatrix}$  est divisible par 17.

# I.4 Opérations élémentaires

 $\text{ $\mathbb{A}$-appel $\mathcal{H}$ : Soient $n\in\mathbb{N}$, $i,j\in[\![1\,;n]\!]$ et $\lambda\in\mathbb{K}$. On definit les matrices de transposition $\mathrm{L}_{i,j,n}$, de dilatation $\mathrm{H}_{i,n}(\lambda)$ et de transvection $\mathrm{T}_{i,j,n}(\lambda)$ par : }$ 

$$\mathbf{L}_{i,j,n} = \begin{pmatrix} \mathbf{1} & & & \\ & \mathbf{1} & & \\ & & \mathbf{1} & \\ & & & \mathbf{1} \end{pmatrix} \quad \mathbf{H}_{i,n}(\lambda) = \begin{pmatrix} \mathbf{1} & & & \\ & \ddots & & \\ & & \mathbf{1} & \\ & & & \mathbf{1} \end{pmatrix} \quad \mathbf{T}_{i,j,n}(\lambda) = \begin{pmatrix} \mathbf{1} & & & \\ & \ddots & & \\ & & & & \mathbf{1} \end{pmatrix}$$

Corollaire 3.2 : Soient  $n \in \mathbb{N}$ ,  $i, j \in [1; n]$  et  $\lambda \in \mathbb{K}$ .

- $\det\left(\mathbf{L}_{i,j,n}\right) = -1$ .
- $\det\left(\mathbf{H}_{i,n}(\lambda)\right) = \lambda$ .
- $\det\left(\mathbf{T}_{i,j,n}(\lambda)\right) = 1.$

Rappel 5 (Opérations élémentaires) : Soit  $A \in \mathcal{M}_{n,p}(\mathbb{K})$ .

- Multiplier A par  $L_{i,j,n}$  à droite revient à permuter les  $i^{\text{ème}}$  et  $j^{\text{ème}}$  colonnes de A. On note  $L_i \leftrightarrow L_j$  cette opération.
- Multiplier A par  $H_{i,n}(\lambda)$  à droite revient à multiplier la  $i^{\text{ème}}$  colonne de A par  $\lambda$ . On note  $L_i \leftarrow \lambda L_i$  cette opération.
- Multiplier A par  $T_{i,j,n}(\lambda)$  à droite revient à additionner la  $j^{\text{ème}}$  colonne de A multipliée par  $\lambda$  à la  $i^{\text{ème}}$  (avec  $i \neq j$ ).

On note  $L_i \leftarrow L_i + \lambda L_j$  cette opération.

Corollaire 3.3 : Soit  $A \in \mathcal{M}_n(\mathbb{K})$ .

1 Une transposition sur les colonnes de A change le déterminant en son opposé.

$$\forall\,i\neq j,\;\det\left(\mathsf{AL}_{i,j,n}\right)=-\mathrm{det}\,(\mathsf{A}).$$

2 Une dilatation par  $\lambda$  sur les colonnes de A multiplie le déterminant par  $\lambda$ .

$$\forall\,\lambda\in\mathbb{K},\ \det\left(\mathbf{A}\mathbf{H}_{i,n}(\lambda)\right)=\lambda\det\left(\mathbf{A}\right).$$

3 Une transvection sur les colonnes de A ne change pas le déterminant.

$$\forall\,i\neq j,\,\lambda\in\mathbb{K},\,\det\left(\mathsf{AT}_{i,j,n}(\lambda)\right)=\det\left(\mathsf{A}\right).$$

Remarque : Soient  $A \in \mathcal{M}_n(\mathbb{K})$  et E une matrice élémentaire. Alors  $\det(E) \neq 0$  et

$$det(AE) = det(A) \times det(E).$$

Proposition 4 (Déterminant d'une matrice triangulaire):

$$\begin{vmatrix} a_1 & \cdots & \cdots \\ & \ddots & & \vdots \\ & (0) & \ddots & \vdots \\ & & a_n \end{vmatrix} = \prod_{k=1}^n a_k.$$

 $\mathbf{Preuve}: \mathrm{Soit}\ \mathbf{A} \in \mathscr{M}_n(\mathbb{K})\ \mathrm{triangulaire}.\ \mathbf{On}\ \mathrm{note}\ a_1,\ a_2,\ \ldots,\ a_n\ \mathrm{ses}\ \mathrm{coefficients}\ \mathrm{diagonaux}.$ 

- Fi l'un des  $\boldsymbol{a}_k$  est nul, la matrice est non inversible (son rang est < n ) donc le déterminant est nul, et le produit des  $a_k$  aussi.
- Ii tous les  $a_k$  sont non nuls, on peut par transvections successives sur les colonnes se ramener à une matrice diagonale  $\Delta=\mathrm{diag}(a_1,a_2,\cdots,a_n).$

D'où,

$$\det\left(\mathbf{A}\right) = \det\left(\Delta\right) = \prod_{k=1}^{n} a_{k}.$$

## Méthode I (Calcul du déterminant d'une matrice) :

Pour calculer le déterminant d'une matrice  $\mathrm{A}\in\mathscr{M}_n(\mathbb{K})$ , on applique l'algorithme de Gauss sur les colonnes de la matrice.

On se ramène ainsi à une matrice échelonnée triangulaire (inutile de la réduire) dont le calcul du déterminant est aisé.

Exercice 5: Calculer le déterminant des matrices suivantes (de taille n lorsque non précisé):

$$\begin{bmatrix}
1 & & & \\
& 2 & (1) & \\
& (0) & \ddots & \\
& & & n
\end{bmatrix}$$

$$\begin{bmatrix} 1 & & & & & & \\ & 2 & (1) & & & & \\ & (0) & \ddots & & & \\ & & & n \end{bmatrix} \qquad \begin{bmatrix} a_1 & a_1 & \dots & \dots & a_1 \\ a_1 & a_2 & \dots & \dots & a_2 \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & a_{n-1} & a_{n-1} \\ a_1 & a_2 & \dots & a_{n-1} & a_n \end{bmatrix} \begin{bmatrix} a & 1 & \dots & \dots & 1 \\ 1 & a & \ddots & (1) & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & (1) & \ddots & a & 1 \\ 1 & & & & & & 1 \end{bmatrix}$$

$$\begin{vmatrix} \begin{pmatrix} a & 1 & \dots & \dots & 1 \\ 1 & a & \ddots & (1) & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & (1) & \ddots & a & 1 \\ 1 & \dots & \dots & 1 & a \end{pmatrix}$$

# I.5 Matrice inversible

Théorème 5 : Soit  $A \in \mathcal{M}_n(\mathbb{K})$ .

A est inversible  $\iff$  $\det(\mathbf{A}) \neq 0$ .

Le déterminant caractérise donc les matrices inversibles.

#### Preuve:

- $(\Leftarrow)$  : G A est non inversible, alors  $\det\left(A
  ight)=0$ . Par contraposition, si  $\det\left(A
  ight)
  eq0$  alors A est
  - $(\Rightarrow)$  : G A est inversible, alors  $\operatorname{rg} A=n$ . On peut, par transvections successives, se ramener à une matrice triangulaire dont les coefficients diagonaux  $a_1,\ a_2,\ \dots,\ a_n$  sont tous non nuls.

Exemples 2: D'après l'exercice (5),

• 
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 8 \end{pmatrix}$$
 et  $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & 4 \\ 3 & 2 & 1 \end{pmatrix}$  sont inversibles.

• 
$$\begin{pmatrix} a & 1 & \dots & \dots & 1 \\ 1 & a & \ddots & (1) & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & (1) & \ddots & a & 1 \\ 1 & \dots & \dots & 1 & a \end{pmatrix}$$
 est inversible si, et seulement si  $a \neq 1$  et  $a \neq 1 - n$ .

Exercice  $\mathcal{L}$ : Soit  $m \in \mathbb{R}$ . Pour les matrices suivantes :

$$B = \begin{pmatrix} 1 & m & m^2 \\ m^2 & 1 & m \\ m & m^2 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 - m & 1 + m & 1 \\ -m & -m & -1 \\ m & m - 1 & 0 \end{pmatrix}.$$

- 1 Calculer le déterminant et déterminer pour quelles valeurs de m la matrice est inversible.
- Calculer  $B^{-1}$  et  $C^{-1}$  lorsque B et C sont inversibles.

# I.6 Produit de matrices

Théorème 6 :

$$\forall A, B \in \mathcal{M}_n(\mathbb{K}), \quad \det(AB) = \det(A)\det(B).$$

#### Preuve:

- Fi B est non inversible, alors  $\operatorname{rg} B < n$  et  $\det\left(B\right) = 0.$ Comme  $rg(AB) \leqslant \min(\operatorname{rg} A,\operatorname{rg} B) < n$ , on en déduit également que AB est non inversible. Par conséquent  $\det(AB) = 0 = \det(A)\det(B)$ .
- Fi B est inversible, alors  $\operatorname{rg}\left(\mathbf{B}\right)=n$  et, de même que précédemment, par transvection successives, on peut se ramener à une matrice diagonale  $\Delta = \mathrm{diag}(a_1,a_2,\cdots,a_n)$  avec  $a_1,a_2,\cdots,a_n$  non

En notant T la matrice produit de ces transvections, on a donc  $BT=\Delta$  puis

$$\det\left(\mathbf{B}\right) = \det\left(\mathbf{BT}\right) = \det\left(\Delta\right) = \prod_{k=1}^{n} a_{k}.$$

Notons  $C_1$ ,  $C_2$ , ...,  $C_n$  les colonnes de A, on a :

$$\mathsf{ABT} = \big(\mathsf{C}_1 | \mathsf{C}_2 | \cdots | \mathsf{C}_n \big) \, \mathsf{diag}(a_1, a_2, \cdots, a_n) = \big(a_1 \mathsf{C}_1 | a_2 \mathsf{C}_2 | \cdots | a_n \mathsf{C}_n \big).$$

$$\mathcal{D}'\!\circ\!\dot{\mathbf{u}}\!,\,\det\left(\mathbf{A}\mathbf{B}\right)=\det\left(a_{1}\mathbf{C}_{1}|a_{2}\mathbf{C}_{2}|\cdots|a_{n}\mathbf{C}_{n}\right)$$

Usons de la linéarité de det par rapport à chacune des ses colonnes :

$$= a_1 a_2 \cdots a_n \det \left( \mathbf{C}_1 | \mathbf{C}_2 | \cdots | \mathbf{C}_n \right)$$
$$= \det \left( \mathbf{B} \right) \times \det \left( \mathbf{A} \right)$$

**ATTENTION**  $\det(A + B) \neq \det(A) + \det(B)$ .

Exercice 7 : Soit  $n \in \mathbb{N}^*$  et  $A \in \mathcal{M}_n(\mathbb{R})$  telle que  $A^2 = A - I_n$ . Calculer  $\det(A)$ .

Remarques : Cette petite propriété a et aura de grandes conséquences notamment :

 $\det(AB) = \det(A) \times \det(B) = \det(B) \times \det(A) = \det(BA)$  alors que  $AB \neq BA$  généralement.

Le déterminant, comme les polynômes d'endomorphismes, permet de récupérer un peu de commutativité.

- $--\forall p \in \mathbb{N}, \det(A^p) = (\det(A))^p.$
- $-- \forall P \in \mathcal{G}l_n(\mathbb{K}), \det(P^{-1}AP) = \det(A).$

Autrement dit, deux matrices semblables ont le même déterminant. Comme la trace, le déterminant est donc un invariant de similitude.

Corollaire 6.1:

$$\forall\, \mathbf{A} \in \mathscr{G}l_n(\mathbb{K}), \quad \det{(\mathbf{A}^{-1})} = \frac{1}{\det{(\mathbf{A})}}.$$

Preuve : Comme A est inversible alors  $A^{-1}A = I_n$ .

D'après le résultat précédent,  $\det{(\mathbf{A}^{-1}\mathbf{A})} = \det{(\mathbf{I}_n)}$ , i.e.  $\det{(\mathbf{A}^{-1})}\det{(\mathbf{A})} = 1$ .

#### Transposée

Théorème 7 :

$$\forall\,\mathbf{A}\in\mathscr{M}_n(\mathbb{K}),\quad\det{(\mathbf{A}^\top)}=\det{(\mathbf{A})}.$$

Le déterminant est donc aussi une forme multilinéaire et antisymétrique (et alternée) en les lignes de la matrice.

#### Preuve:

- Si A est non inversible, alors  $\operatorname{rg}\left(\mathbf{A}\right) < n$ .
  - La transposée n'ayant aucune influence sur le rang, on a aussi  $\operatorname{rg}\left(\mathbf{A}^{ op}\right) < n$  : la transposée de A n'est donc pas inversible non plus.
  - En particulier, A et sa transposée ont toutes deux un déterminant nul. Égal donc !
- Si  $\,\mathrm{A}$  est inversible, alors on peut par transvections successives (sur les colonnes) se ramener à une matrice diagonale à coefficients  $a_1,\ a_2,\ \cdots,\ a_n$  non ruls :

$$\Delta = \ \mathrm{diag}(a_1, a_2, \cdots, a_n).$$

On a encore 
$$AT = \Delta$$
 et  $\det(A) = \det(\Delta) = \prod_{k=1}^n a_k$ . Or,  $(AT)^\top = T^\top A^\top \implies \det\left((AT)^\top\right) = \det\left(T^\top A^\top\right) = \det\left(T^\top\right) \times \det\left(A^\top\right) = \det\left(A^\top\right)$ . L'égalité  $(AT)^\top = \Delta^\top (=\Delta)$  entraîne alors  $\det\left(A^\top\right) = \det\left((AT)^\top\right) = \det\left(\Delta\right) = \det\left(A\right)$ . D'où,  $\det\left(A^\top\right) = \det\left(A\right)$ .

Exercice 8 : Calculer 
$$\begin{vmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{vmatrix}$$
 où  $a, b \in \mathbb{K}$ .

Conséquences : Toutes les propriétés vues sur les colonnes des déterminants sont donc valables sur les lignes.

En particulier,

### Corollaire 7.1:

- 1 Le déterminant est linéaire par rapport à chacune des lignes de la matrice.
- 2 Le déterminant d'une matrice dont une ligne est nulle est nul.
- 3 Le déterminant d'une matrice est changé en son opposé si l'on échange deux lignes distinctes.
- 4 Le déterminant d'une matrice dont deux lignes sont égales est nul.
- On ne change pas le déterminant lorsqu'on ajoute à une ligne une combinaison linéaire des autres.
- 6 Si les lignes de A forment une familles liée, alors le déterminant est nul.
- 7 Une transposition sur les lignes de A change le déterminant en son opposé.

$$\forall\,i\neq j,\ \det\left(\mathcal{L}_{i,j,n}\mathcal{A}\right)=-\mathrm{det}\left(\mathcal{A}\right).$$

8 Une dilatation par  $\lambda$  sur les lignes de A multiplie le déterminant par  $\lambda$ .

$$\forall \lambda \in \mathbb{K}, \ \det \left( \mathcal{H}_{i,n}(\lambda) \mathcal{A} \right) = \lambda \det \left( \mathcal{A} \right).$$

9 Une transvection sur les lignes de A ne change pas le déterminant.

$$\forall\,i\neq j,\,\lambda\in\mathbb{K},\,\det\left(\mathbf{T}_{i,j,n}(\lambda)\mathbf{A}\right)=\det\left(\mathbf{A}\right).$$



# CALCULS DE DÉTERMINANTS

# Développement suivant une ligne ou une colonne

Lemme 1:

$$\begin{vmatrix} 1 & 0 & \cdots & 0 \\ m_{2,1} & m_{2,2} & \dots & m_{2,n} \\ \vdots & \vdots & & \vdots \\ m_{n,1} & m_{n,2} & \dots & m_{n,n} \end{vmatrix}_{n} = \begin{vmatrix} m_{2,2} & \dots & m_{2,n} \\ \vdots & & \vdots \\ m_{n,2} & \dots & m_{n,n} \end{vmatrix}_{n-1} .$$

Preuve : Soit  $c \in \mathcal{M}_{n-1,1}(\mathbb{K})$ .

Preuve: Goit 
$$c\in\mathcal{M}_{n-1,1}(\mathbb{K})$$
. Considérons l'application  $f\colon\mathcal{M}_{n-1}(\mathbb{K})\ \to\ \mathbb{K}$  où  $\mathbf{A}=\begin{pmatrix}m_{2,2}&\dots&m_{2,n}\\\vdots&&\vdots\\m_{n,2}&\dots&m_{n,n}\end{pmatrix}$  . 
$$\mathbf{A} \ \longmapsto\ \begin{vmatrix}1&0_{1,n-1}\\c&\mathbf{A}\end{vmatrix}$$

En assimilant la matrice A au (n-1)-uplet de ses vecteurs colonnes, l'application f est également une forme multilinéaire antisymétrique et vérifiant  $f(\mathbf{I}_{n-1})=1$  quel que soit le vecteur colonne c. Par unicité d'une telle application,  $f \equiv \det{}_{n-1}.$ 

Conclusion,

$$\begin{vmatrix} 1 & 0 & \cdots & 0 \\ m_{2,1} & m_{2,2} & \dots & m_{2,n} \\ \vdots & \vdots & & \vdots \\ m_{n,1} & m_{n,2} & \dots & m_{n,n} \end{vmatrix}_n = f \begin{pmatrix} m_{2,2} & \dots & m_{2,n} \\ \vdots & & \vdots \\ m_{n,2} & \dots & m_{n,n} \end{pmatrix} = \begin{vmatrix} m_{2,2} & \dots & m_{2,n} \\ \vdots & & \vdots \\ m_{n,2} & \dots & m_{n,n} \end{vmatrix}_{n-1} .$$

Remarque: On obtient un résultat analogue en transposant.

Définition 3 : Soit  $A \in \mathcal{M}_n(\mathbb{K})$ .

Pour tout  $1 \leq i, j \leq n$ , on appelle mineur d'indice (i;j) de A le déterminant  $\Delta_{i,j}(A)$  de la matrice carrée d'ordre n-1 obtenue en rayant la ligne i et la colonne j de A

$$\Delta_{i,j} = \begin{vmatrix} a_{1,1} & a_{1,2} & \dots & \dots & a_{1,j} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & \dots & a_{2,j} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ a_{i,1} & a_{i,2} & \dots & \dots & a_{i,j} & \dots & a_{n,n} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & \dots & a_{n,j} & \dots & a_{n,n} \end{vmatrix}.$$

 $\mathsf{Sorème} \; \mathsf{S} : \; \mathrm{Soit} \; \mathrm{A} \in \mathscr{M}_n(\mathbb{K}).$ 

$$\forall \, i \in \llbracket 1\,; n \rrbracket \,, \, \, \det{(\mathbf{A})} = \sum_{i=1}^n (-1)^{i+j} a_{i,j} \Delta_{i,j}(\mathbf{A}) \qquad \qquad \text{par d\'eveloppement suivant la } i^{\grave{\mathsf{e}}\mathsf{me}} \, \, \mathrm{ligne},$$

$$\forall \, i \in \llbracket 1 \, ; n \rrbracket \, , \, \, \det (\mathbf{A}) = \sum_{j=1}^n (-1)^{i+j} a_{i,j} \Delta_{i,j} (\mathbf{A}) \qquad \qquad \text{par d\'eveloppement suivant la } i^{\text{\`eme}} \text{ ligne},$$
 
$$\forall \, j \in \llbracket 1 \, ; n \rrbracket \, , \qquad = \sum_{i=1}^n (-1)^{i+j} a_{i,j} \Delta_{i,j} (\mathbf{A}) \qquad \qquad \text{par d\'eveloppement suivant la } j^{\text{\`eme}} \text{ colonne}.$$

On peut développer suivant n'importe quelle ligne ou n'importe quelle colonne. On cherche évidemment une ligne ou une colonne ayant le plus de 0 possible...

Remarque : Par une récurrence évidente et à l'aide de ces formules, on retrouve ici que le déterminant d'une matrice est une fonction polynomiale en les coefficients de la matrice.

Preuve : Soit  $A=(a_{ij})\in \mathcal{M}_n(\mathbb{K})$ . On montre ce résultat sur la première formule. L'invariance du déterminant par la transposée donnant le second résultat.

Par linéarité par rapport à la  $i^{\mathtt{i}\mathtt{me}}$  ligne, on a :

$$\det\left(\mathbf{A}\right) = \begin{vmatrix} a_{1,1} & a_{1,2} & \dots & \dots & a_{1,j} & \dots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ a_{i,1} & a_{i,2} & \dots & \dots & a_{i,j} & \dots & a_{i,n} \\ \vdots & \vdots & & \vdots & \ddots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & \dots & a_{n,j} & \dots & a_{n,n} \end{vmatrix} = \sum_{j=1}^n a_{i,j} \begin{vmatrix} a_{1,1} & a_{1,2} & \dots & \dots & a_{1,j} & \dots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \dots & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots & \ddots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & \dots & a_{n,j} & \dots & a_{n,n} \end{vmatrix}$$

En composant à droite par j-1 matrices de transposition :

$$=\sum_{j=1}^n (-1)^{j-1}a_{i,j}\begin{vmatrix} a_{1,j} & a_{1,1} & a_{1,2} & \dots & \dots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \dots & \dots & 0 \\ \vdots & \vdots & & \vdots & \ddots & & \vdots \\ a_{n,j} & a_{n,1} & a_{n,2} & \dots & \dots & \dots & a_{n,n} \end{vmatrix}$$

En composant à gauche par i-1 matrices de transposition :

$$=\sum_{j=1}^n (-1)^{j-1} (-1)^{i-1} a_{i,j} \begin{vmatrix} 1 & 0 & 0 & \dots & \dots & 0 \\ a_{1,j} & a_{1,1} & a_{1,2} & \dots & \dots & \dots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & \ddots & & \vdots \\ a_{n,j} & a_{n,1} & a_{n,2} & \dots & \dots & \dots & a_{n,n} \end{vmatrix}$$

D'après le lemme (1) :

$$= \sum_{j=1}^n (-1)^{i+j-2} a_{i,j} \, \Delta_{i,j}(\mathbf{A}) = \sum_{j=1}^n (-1)^{i+j} a_{i,j} \, \Delta_{i,j}(\mathbf{A}).$$

Exercice 9 : Calculer  $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$  en développant par rapport à la colonne 3 puis par rapport à

la ligne 2.

#### Un peu d'histoire : Complexité de l'algorithme de calcul du déterminant

Ces formules ramènent le calcul d'un déterminant d'ordre n à celui de n déterminants d'ordre

Si  $u_n$  est le nombre d'opérations pour calculer un déterminant d'ordre n, on a donc :

$$u_n = nu_{n-1} + n \geqslant nu_{n-1} \implies u_n \geqslant \frac{n!}{2}u_2 = \frac{3}{2}n!$$

Ainsi, cet algorithme est rapidement explosif en nombre d'opérations. Ces formules ne sont donc pas exploitables en pratique (sauf pour n = 3 ou 2).

En pratique, on se ramène toujours, grâce à l'algorithme de Gauss, au déterminant d'une matrice triangulaire, ce qui nécessite  $O(n^3)$  opérations.

Quelques chiffres: Pour une modeste matrice  $25 \times 25$ , on a  $25! \simeq 1.5 \times 10^{25}$  opérations. Un ordinateur téraflops, c'est-à-dire capable d'effectuer 10<sup>12</sup> opérations en virgule flottante par seconde aurait besoin d'environ 500 000 ans de fonctionnement ininterrompu pour effectuer ce calcul.

Ce chiffre est à comparer avec le nombre d'opérations de la méthode de Gauss. Dans ce cas, l'ordre est de  $10^5$  opérations, que le même ordinateur effectuera en 0,1 millionièmes de secondes.

À titre d'information, l'ordinateur le plus puissant du monde en 2022 (composé de 591 872 cœurs) atteint une puissance maximale de 1,7 exaflops soit environ  $1,7 \times 10^{18}$  opérations par seconde. Il s'en tirerait en 4 mois seulement... Avec une matrice  $26 \times 26$ , ce chiffre passe à 7 années de calcul... 200 ans pour une matrice  $27 \times 27$ , ... 5 millions d'années pour une matrice  $30 \times 30$ .

#### II.2 Déterminant d'une matrice $3 \times 3$

#### Proposition 9 (Règle de Sarrus) :

$$\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} = a_{1,1} \begin{vmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{vmatrix} - a_{2,1} \begin{vmatrix} a_{1,2} & a_{1,3} \\ a_{3,2} & a_{3,3} \end{vmatrix} + a_{3,1} \begin{vmatrix} a_{1,2} & a_{1,3} \\ a_{2,2} & a_{2,3} \end{vmatrix}$$

$$= a_{1,1} a_{2,2} a_{3,3} + a_{2,1} a_{3,2} a_{1,3} + a_{3,1} a_{1,2} a_{2,3} \dots$$

$$- a_{3,1} a_{2,2} a_{1,3} - a_{2,1} a_{1,2} a_{3,3} - a_{1,1} a_{3,2} a_{2,3}.$$

$$\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} = a_{1,1} \begin{vmatrix} \Box & \Box & \Box \\ \Box & a_{2,2} & a_{2,3} \\ \Box & a_{3,2} & a_{3,3} \end{vmatrix} - a_{2,1} \begin{vmatrix} \Box & a_{1,2} & a_{1,3} \\ \Box & \Box & \Box \\ \Box & a_{3,2} & a_{3,3} \end{vmatrix} + a_{3,1} \begin{vmatrix} \Box & a_{1,2} & a_{1,3} \\ \Box & a_{2,2} & a_{2,3} \\ \Box & \Box & \Box \end{vmatrix}$$
$$= a_{1,1} a_{2,2} a_{3,3} + a_{2,1} a_{3,2} a_{1,3} + a_{3,1} a_{1,2} a_{2,3} \dots$$
$$- a_{3,1} a_{2,2} a_{1,3} - a_{2,1} a_{1,2} a_{3,3} - a_{1,1} a_{3,2} a_{2,3}.$$

Exercice O: Soient a, b et c trois scalaires quelconques.

Calculer les déterminants suivants :

$$\begin{array}{c|cccc}
bc & ac & ab \\
a & b & c \\
1 & 1 & 1
\end{array}$$

$$\begin{bmatrix} a & b & ab \\ a & c & ac \\ c & b & bc \end{bmatrix}.$$

$$\begin{bmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{bmatrix}.$$

$$\begin{vmatrix} n! & (n-1)! & (n-2)! \\ (n-1)! & (n-2)! & (n-3)! \\ (n-2)! & (n-3)! & (n-4)! \end{vmatrix}.$$

$$\begin{bmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{bmatrix}.$$

$$\left| \begin{array}{ccc} \mathbf{P}(a) & \mathbf{P}(a+1) & \mathbf{P}(a+2) \\ \mathbf{P}(b) & \mathbf{P}(b+1) & \mathbf{P}(b+2) \\ \mathbf{P}(c) & \mathbf{P}(c+1) & \mathbf{P}(c+2) \end{array} \right| \text{ où } \mathbf{P} \in \mathbb{R}_1[\mathbf{X}]$$

# III

# DÉTERMINANT D'UN ENDOMORPHISME

# III.1 Déterminant d'une famille de n vecteurs dans une base en dimension n

Dans un  $\mathbb{K}$ -ev  $\mathcal{E}$  de dimension n, considérons une base  $\mathcal{B}=(e_1,\dots,e_n)$  et  $\mathcal{F}=(v_1,\dots,v_n)$  une famille de n vecteurs de  $\mathcal{E}$ .

 $\forall\,j\in [\![1\,;n]\!],\,\text{il existe un unique $n$-uplet }(a_{1,j},\ldots,a_{n,j})\in \mathbb{K}^p \text{ tel que }v_j=\sum_{i=1}^n a_{i,j}e_i \text{ et on a}:$ 

$$\operatorname{Mat}_{\mathcal{B}}(\mathcal{F}) = \left(a_{i,j}\right)_{1 \leqslant i,j \leqslant n}.$$

Définition +: Soit E un K-ev de dimension n, et  $\mathcal{B}=(e_1,\ldots,e_n)$  une base de E.

Pour toute famille  $\mathcal{F}=(v_1,\cdots,v_n)$  de n vecteurs de E, on appelle déterminant de  $\mathcal{F}$  dans la base  $\mathcal{B}$ , noté det  $_{\mathcal{B}}(\mathcal{F})$  le déterminant de la matrice de la famille  $\mathcal{F}$  dans la base  $\mathcal{B}$ .

$$\det_{\mathcal{B}}(\mathcal{F}) = \det\left(\operatorname{Mat}_{\mathcal{B}}(\mathcal{F})\right).$$

En reprenant les notations ci-dessous et en posant :

$$\mathbf{A} = \left( \mathbf{C}_1 | \dots | \mathbf{C}_n \right) \quad \text{ où } \quad \forall \, j \in \llbracket 1 \, ; n \rrbracket \, , \, \, \mathbf{C}_j = \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{n,j} \end{pmatrix} = \mathrm{Mat}_{\mathcal{B}}(v_j), \, \, \mathrm{on } \, \mathbf{a} :$$

$$\det{}_{\mathcal{B}}(\mathcal{F}) = \det{}_{\mathcal{B}}\big(\mathbf{C}_1|\dots|\mathbf{C}_n\big) = \det{}_{\mathcal{B}}(\mathbf{A}).$$

Exercice  $\mathbb{I}$ : Soit  $(\vec{i}, \vec{j})$  une base de  $\overrightarrow{\mathcal{P}}$ .

On considère  $\vec{u}=3\vec{i}+\vec{j}$  et  $\vec{v}=\vec{i}+2\vec{j}$ . Calculer det  $_{(\vec{i},\vec{j})}(\vec{u},\vec{v})$ . Un commentaire ?

Dans le plan, la valeur absolue du déterminant de deux vecteurs dans une base  $\mathcal{B}$  représente l'aire du parallélogramme construit sur les deux vecteurs, l'unité d'aire étant donnée par le parallélogramme construit sur les deux vecteurs de base.

Ce déterminant est nul si, et seulement si les vecteurs sont colinéaires.

Exercice |2 : Dans le  $\mathbb{R}$ -ev  $\mathbb{R}^3$  muni de sa base canonique  $\mathcal{B}$ , on considère la famille  $\mathcal{F}=(v_1,v_2,v_3)$  avec  $v_1=(1\,;0\,;1),\ v_2=(2\,;1\,;3)$  et  $v_3=(1\,;4\,;2)$ .

Déterminer det  $_{\mathcal{B}}(\mathcal{F})$ . Un commentaire?

Dans l'espace, la valeur absolue du déterminant de trois vecteurs dans une base  $\mathcal{B}$  représente le volume du parallélépipède construit sur les trois vecteurs, l'unité de volume étant donnée par le parallélépipède construit sur les trois vecteurs de base.

Ce déterminant est nul si, et seulement si les vecteurs sont coplanaires.

Les propriétés suivantes découlent de la définition, des commentaires précédents et des propriétés du déterminant d'une matrice.

Proposition O: Soit E un K-ev de dimension n muni d'une base  $\mathcal{B}$ .

L'application det  $_{\mathcal{B}}: \mathbf{E}^n \longmapsto \mathbb{K}$  vérifie les propriétés suivantes :

- 1 det  $_{\mathcal{B}}$  est linéaire par rapport à chaque variable : det  $_{\mathcal{B}}$  est n-linéaire.
- 2 det  $_{\mathcal{B}}$  est antisymétrique : la transposition de deux vecteurs change det  $_{\mathcal{B}}$  en son opposé.
- $\mathbf{3} \quad \det_{\mathcal{B}}(\mathcal{B}) = 1.$
- On ne change pas la valeur de  $\det_{\mathcal{B}}(\mathcal{F})$  si on ajoute à un vecteur une combinaison linéaire des autres.
- 5 Si la famille  $\mathcal{F}$  est liée, alors  $\det_{\mathcal{B}}(\mathcal{F}) = 0$ .

Théorème II (Caractérisation des Bases) : Soient E un K-ev de dimension n, et  $\mathcal{B}$  une base de E et  $\mathcal{F}$  une famille de n vecteurs de E.

 $\mathcal{F}$  est une base de E  $\iff$  det  $_{\mathcal{B}}(\mathcal{F}) \neq 0$ 

Preuve : Posons  $\mathcal{B}=(e_1,\dots,e_n)$ ,  $\mathcal{F}=(v_1,\cdots,v_n)$  et considérons l'unique endomorphisme f de E défini par :

$$\forall\, j\in \llbracket 1\,; n\rrbracket\,,\ f(e_j)=v_j.$$

Notons  $\mathbf{A}=\mathrm{Mat}_{\mathcal{B}}(f).$  Par définition, on a :

$$\mathbf{A} = \mathrm{Mat}_{\mathcal{B}}\Big(f(e_1)|\dots|f(e_n)\Big) = \mathrm{Mat}_{\mathcal{B}}\Big(v_1|\dots|v_n\Big) = \mathrm{Mat}_{\mathcal{B}}\Big(\mathcal{F}\Big).$$

Profitons alors de tout le travail et chemin accompli :

 $\mathcal{F}$  est une base de  $E \iff f$  transforme la base  $\mathcal{B}$  en une base de E.  $\iff f \text{ est bijective.}$   $\iff A \text{ est inversible.}$   $\iff \det\left(A\right) \neq 0.$   $\iff \det\left(\operatorname{Mat}_{\mathcal{B}}(\mathcal{F})\right) \neq 0$   $\iff \det_{\mathcal{B}}(\mathcal{F}) \neq 0.$ 

Exercice  $\beta$ : Justifier que la famille  $\mathcal{F}$  de l'exercice (12) est une base de  $\mathbb{R}^3$ .

# III.2 Déterminant d'un endomorphisme en dimension finie

Définition/Théorème 5 : Soit E un K-ev de dimension n et f un endomorphisme de E.

Le scalaire det  $_{\mathcal{B}}(f(\mathcal{B}))$  est indépendant de la base  $\mathcal{B}$  de E.

On l'appelle le déterminant de f et on le note  $\det(f)$ .

Remarque : Si  $\mathcal{B}=(e_1,\ldots,e_n)$  est une base de E et  $f\in\mathcal{L}(E)$ , alors :

$$\det\left(f\right) = \det\left(f(e_1), \dots, f(e_n)\right).$$

Ainsi,  $|\det(f)|$  est le coefficient par lequel f multiplie les volumes.

#### Exemples 3:

- $\bullet \ \det \left( \mathrm{I}d_{\mathrm{E}} \right) = \det \left( \mathrm{I}d_{\mathrm{E}}(e_1), \ldots, \mathrm{I}d_{\mathrm{E}}(e_n) \right) = \det \left( e_1, \ldots, e_n \right) = 1.$
- $\label{eq:det_lambda} \bullet \ \det \left( \lambda \mathbf{I} d_{\mathbf{E}} \right) = \det \left( \lambda e_1, \dots, \lambda e_n \right) = \lambda^n.$
- Soit p la projection sur F dans la direction de  $G \neq \{0_E\}$ .

En prenant  $\mathcal{B}=(e_1,\ldots,e_p,e_{p+1},\ldots,e_n)$  une base adaptée à la somme direct  $\mathbf{E}=\mathbf{F}\oplus\mathbf{G},$  on obtient :

$$\begin{split} \det\left(p\right) &= \det\left(p(e_1), \dots, p(e_p), p(e_{p+1}), \dots, p(e_n)\right) \\ &= \det\left(e_1, \dots, e_p, \mathbf{0_E}, \dots, \mathbf{0_E}\right) = \\ &= 0. \end{split}$$

■ Soit s la symétrie par rapport à F dans la direction de G.  $\mathcal{B}=(e_1,\ldots,e_p,e_{p+1},\ldots,e_n)$  une base adaptée à la somme direct  $\mathbf{E}=\mathbf{F}\oplus\mathbf{G}$ , on obtient :

$$\begin{split} \det\left(s\right) &= \det\left(s(e_1), \dots, s(e_p), s(e_{p+1}), \dots, s(e_n)\right) \\ &= \det\left(e_1, \dots, e_p, -e_{p+1}, \dots, -e_n\right) \\ &= (-1)^{n-p}. \end{split}$$

Preuve : Posons  $\mathcal{B}=(e_1,\cdots,e_n)$  une base de E.

Hors 
$$\det_{\mathcal{B}}(f(\mathcal{B})) = \det_{\mathcal{B}}(f(e_1), \cdots, f(e_n)) = \det\Big(\mathrm{Mat}_{\mathcal{B}}(f)\Big).$$

Si on considère une autre base  $\mathcal{B}'$  de E et P la matrice de changement de base de  $\mathcal{B}$  à  $\mathcal{B}'$ , on a :

$$\mathbf{P}^{-1}\mathrm{Mat}_{\mathcal{B}}(f)\mathbf{P}=\mathrm{Mat}_{\mathcal{B}'}(f).$$

Hinsi,

$$\begin{split} \det_{\mathcal{B}'} \Big( f(\mathcal{B}') \Big) &= \det \Big( \operatorname{Mat}_{\mathcal{B}'}(f) \Big) \\ &= \det \Big( \operatorname{P}^{-1} \operatorname{Mat}_{\mathcal{B}}(f) \operatorname{P} \Big) \\ &= \det \left( \operatorname{P}^{-1} \right) \det \Big( \operatorname{Mat}_{\mathcal{B}}(f) \Big) \det \left( \operatorname{P} \right) \\ &= \frac{1}{\det \left( \operatorname{P} \right)} \det \Big( \operatorname{Mat}_{\mathcal{B}}(f) \Big) \det \left( \operatorname{P} \right) \\ &= \det \Big( \operatorname{Mat}_{\mathcal{B}}(f) \Big) \\ &= \det \Big( \operatorname{Mat}_{\mathcal{B}}(f) \Big) \\ &= \det_{\mathcal{B}} \Big( f(\mathcal{B}) \Big). \end{split}$$

Toutes les propriétés qui suivent découlent directement de celles démontrées pour le déterminant d'une matrice.

Proposition 12: Soient  $f, g \in \mathcal{L}(E)$ .

$$\det(g \circ f) = \det(g) \times \det(f).$$

Preuve: Soit 
$$\mathcal B$$
 une base de  $E$ . On note  $A=\operatorname{Mat}_{\mathcal B}(f)$  et  $B=\operatorname{Mat}_{\mathcal B}(g)$ . Flors,

$$\begin{split} \det\left(g\circ f\right) &= \det\left(\operatorname{Mat}_{\mathcal{B}}(g\circ f)\right) = \det\left(\operatorname{Mat}_{\mathcal{B}}(g)\operatorname{Mat}_{\mathcal{B}}(f)\right) \\ &= \det\left(\operatorname{Mat}_{\mathcal{B}}(g)\right) \times \det\left(\operatorname{Mat}_{\mathcal{B}}(f)\right) = \det\left(g\right) \det\left(f\right). \end{split}$$

#### Théorème 13 (Caractérisation des automorphismes) :

Soit E un  $\mathbb{K}$ -ev de dimension n, et f une application linéaire de E.

f est un isomorphisme de E  $\iff$  det  $(f) \neq 0$ .

Dans ce cas,  $\det(f^{-1}) = \frac{1}{\det(f)}$ .

Preuve : Soit 
$$\mathcal B$$
 une base de  $E$ . On note  $A=\operatorname{Mat}_{\mathcal B}(f).$ 

f est un isomorphisme de  $\mathbf{E} \iff \mathbf{A}$  est inversible

$$\iff \det(A) \neq 0$$

$$\iff \det(f) \neq 0.$$

If f est bijective alors  $\det\left(\mathbf{A}\right)\in\mathbb{K}^{*},$  et on a :

$$\det\left(f^{-1}\right) = \det\left(\mathbf{A}^{-1}\right) = \frac{1}{\det\left(\mathbf{A}\right)} = \frac{1}{\det\left(f\right)}.$$

Exercice H: Calculer le déterminant des endomorphismes suivants:

$$\boxed{1} f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

PTSI VINCI - 2024 IV. APPLICATIONS

## **APPLICATIONS**

# IV.1 Systèmes linéaires

Rappel  $\omega$ : On considère un système linéaire AX = B de n equations à n inconnues, avec  $A \in \mathscr{M}_n(\mathbb{K})$ .

Le système AX = B est dit de Cramer s'il vérifie l'une des conditions équivalentes suivantes :

- (i.) A est de rang n.
- (ii.) A  $\sim_L I_n$ .
- (iii.) A  $\sim_{\mathbf{C}} \mathbf{I}_n$ .
- (iv.)  $A \in \mathcal{G}l(\mathbb{K}).$
- (v.) Pour tout  $\mathbf{B} \in \mathscr{M}_{n,1}(\mathbb{K}),$  le système  $\mathbf{A}\mathbf{X} = \mathbf{B}$  admet une unique solution.
- (vi.) Pour tout  $B \in \mathcal{M}_{n,1}(\mathbb{K})$ , le système AX = B admet au moins une solution.
- (vii.) Le système  $AX = 0_{n,1}$  admet une unique solution.

L'unique solution de ce système est alors  $X = A^{-1}B$ .

Théorème H: Le système linéaire AX = B est de Cramer si, et seulement si  $det(A) \neq 0$ .

On donne a présent des formules précisant la solution unique d'un tel système.

Proposition 15 (Formules de Cramer (Hors-Programme)) : Pour toute matrice carrée inversible  $A \in \mathcal{G}l(\mathbb{K})$ , la solution  $X=(x_1,\dots,x_n)$  du système de Cramer AX=B est donnée par :

$$\forall\,k\in \llbracket 1\,;n\rrbracket\,,\quad x_k=\frac{\det\left(\mathbf{C}_1(\mathbf{A}),\ldots,\stackrel{\text{position }k}{\overset{}{\mathbf{B}}},\ldots,\mathbf{C}_n(\mathbf{A})\right)}{\det\left(\mathbf{A}\right)}.$$

 $\mbox{\sc Preuve}: \mbox{\sc L'unique}$  solution X du système de  $\mbox{\sc Cramer}$  AX=B vérifie :

$$x_1 \mathbf{C}_1 + \dots + x_n \mathbf{C}_n = \mathbf{B}.$$

On obtient alors (avec  ${\bf B}$  en position  ${\it k})$  :

$$\begin{split} \det\left(\mathbf{C}_{1}, \dots, \overset{\text{position } k}{\mathbf{B}} \right. &, \dots, \mathbf{C}_{n} \right) &= \det\left(\mathbf{C}_{1}, \dots, \sum_{j=1}^{n} x_{j} \mathbf{C}_{j}, \dots, \mathbf{C}_{n} \right) \\ &= \sum_{j=1}^{n} x_{j} \mathrm{det}\left(\mathbf{C}_{1}, \dots, \mathbf{C}_{j}, \dots, \mathbf{C}_{n} \right) \\ &= x_{k} \mathrm{det}\left(\mathbf{C}_{1}, \dots, \mathbf{C}_{k}, \dots, \mathbf{C}_{n} \right) \\ &= x_{k} \det\left(\mathbf{A}\right). \end{split}$$

Comme  $\det\left(A\right) \neq 0$ , on obtient le résultat souhaité.

PTSI VINCI - 2024 IV. APPLICATIONS

Remarque: Ces formules n'ont pas d'intérêt pratique, puisqu'elles nécessitent le calcul de déterminants couteux en opérations, alors que l'inversion d'une matrice (et donc la résolution du système) nécessite  $O\left(n^3\right)$  opérations.

Elles ont, en revanche, un intérêt théorique car elles permettent, lorsque le système dépend d'un paramètre, d'étudier la continuité, dérivabilité, ... des solutions en fonction de ce paramètre.

Exercice 5 : À l'aide des formules de Cramer, résoudre le système :

$$\mathcal{S}: \begin{cases} 2x_1 + x_2 &= 7 \\ -3x_1 + x_3 &= -8 \\ x_2 + 2x_3 &= -3 \end{cases}$$

Comme  $\det\left(A\right)=\begin{vmatrix}2&1&0\\-3&0&1\\0&1&2\end{vmatrix}=-2+6=4\neq0$ , le système est bien un système de Cramer et l'on a :

$$x_{1} = \frac{\begin{vmatrix} 7 & 1 & 0 \\ -8 & 0 & 1 \\ -3 & 1 & 2 \end{vmatrix}}{\begin{vmatrix} 2 & 1 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 2 \end{vmatrix}} = \frac{3}{2}$$

$$x_{2} = \frac{\begin{vmatrix} 2 & 7 & 0 \\ -3 & -8 & 1 \\ 0 & -3 & 2 \end{vmatrix}}{\begin{vmatrix} 2 & 1 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 2 \end{vmatrix}} = 4$$

$$x_{3} = \frac{\begin{vmatrix} 2 & 1 & 7 \\ -3 & 0 & -8 \\ 0 & 1 & -3 \end{vmatrix}}{\begin{vmatrix} 2 & 1 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 2 \end{vmatrix}} = -\frac{7}{2}$$

Lunique solution de  $\mathcal S$  est donc le vecteur  $X_{\mathcal S}=\left(\frac{3}{2}\,;4\,;-\frac{7}{2}\right)$ .

# IV.2 Équation des hyperplans vectoriels

Théorème lé : Soit E de dimension n muni d'une base  $\mathcal{B}$  et  $\mathbf{H}=\mathrm{vect}\,(v_2,\dots,v_n)$  un hyperplan de E.

Alors, pour tout  $v \in E$ :

$$v \in \mathcal{H} \iff \det_{\mathcal{B}}(v, v_2, \dots, v_n) = 0.$$

 $\mbox{\bf Preuve}:$  Cout d'abord, notons que  $(v_2,\dots,v_n)$  est une famille libre par hypothèse.

Dès lors, on a les équivalences suivantes :

$$\det{}_{\mathcal{B}}(v,v_2,\ldots,v_n)=0\iff (v,v_2,\ldots,v_n)\text{ est liée}\\ \iff v\in\mathrm{vect}\,(v_2,\ldots,v_n)=\mathrm{H}.$$

Remarque : Ainsi H est le noyau de la forme linéaire non nulle :

$$\begin{array}{cccc} \varphi : & \to & \mathbb{K} \\ & v & \longmapsto & \det{}_{\mathcal{B}}(v, v_2, \dots, v_n) \end{array}$$

PTSI VINCI - 2024 IV. APPLICATIONS

et H est défini par l'équation linéaire  $\varphi(v)=0.$ 

Exercice 6 : Déterminer l'équation cartésienne :

 $\ \ \, 2$  du plan passant par les points A (1;0;0), B (0;1;0) et C (0;0;1).

# Index

```
Application
    n-linéaire, 21
    alternée, 6
    antisymétrique, 21
    multilinéaire, 6
    symétrique, 6
Base, 21
Caractérisation
    des automorphismes, 23
    des bases, 21
    des matrices inversibles, 13
Cramer
    Formules de, 24
Déterminant
    d'un endomorphisme, 22
    d'un produit de matrices, 14
    d'une famille de vecteurs, 20
    d'une matrice
       diagonale, 11
      triangulaire, 12
    d'une matrice carrée, 7
    d'une matrice inversible, 13
    de l'inverse d'une matrice, 15
    de la transposée d'une matrice, 15
Invariant
    de similitude, 15
Matrice
    de dilatation, 11
    de transposition, 11
    de transvection, 11
    inversible, 13
    semblable, 15
Méthode
    Déterminant d'une matrice, 13
Mineur, 17
Opération
    élémentaire, 12
Projecteur, 22
Règle
    de Sarrus, 19
Symétrie, 22
Système
    de Cramer, 24
Vecteur
    colinéaire, 20
    coplanaire, 21
```