Fonctions circulaires

Fonctions circulaires

I/ Un peu de trigonométrie

Exercice 1 : Calculer :

1.
$$\cos\left(\frac{2\pi}{3}\right)$$

2.
$$\sin\left(-\frac{7\pi}{6}\right)$$
 3. $\cos\left(\frac{5\pi}{3}\right)$

3.
$$\cos\left(\frac{5\pi}{3}\right)$$

4.
$$\sin\left(\frac{121\pi}{6}\right)$$

Exercice 2 : Soit $a \in [\pi; 2\pi]$ la mesure d'un angle tel que $\cos(a) = \frac{1}{5}$. Calculer $\sin(a)$.

Exercice 3: Simplifier les expressions suivantes:

$$A = \cos\left(x - \frac{\pi}{2}\right)$$

$$\mathbf{B} = \, \sin \left(\frac{5\pi}{2} - x \right) + \cos(3\pi - x) \, \mathbf{C} = \, \cos \left(\frac{5\pi}{2} + x \right) + \sin \left(x - \frac{7\pi}{2} \right)$$

Exercice 4:

- 1. En remarquant que $\frac{1}{12} = \frac{1}{3} \frac{1}{4}$, montrer que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$ puis calculer $\sin\left(\frac{\pi}{12}\right)$.
- 2. Déterminer les valeurs exactes de $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{11\pi}{12}\right)$
- 3. Résoudre dans \mathbb{R} l'équation $(\sqrt{3}+1)\cos(x)+(\sqrt{3}-1)\sin(x)+\sqrt{3}-1=0$.

Exercice 5 : Calculer la valeur exacte de $\frac{\cos(\frac{\pi}{12}) + \sin(\frac{\pi}{12})}{\cos(\frac{\pi}{12}) - \sin(\frac{\pi}{12})}$.

Exercice 6: Exprimer $\cos^2(x) - \cos(x)\sin(x)$ en fonction de $\tan(x)$.

Exercice 7 : Sans se préoccuper des domaines de définition, simplifier les expressions suivantes :

$$1. \ (\cos(x) + \sin(x))^2$$

$$2. \cos(2x)\cos(x) - \sin(2x)\sin(x).$$

3.
$$\sin(3x)\cos(2x) - \sin(2x)\cos(3x)$$
.

$$4. \cos\left(x - \frac{2\pi}{3}\right) + \cos\left(x + \frac{2\pi}{3}\right).$$

5.
$$\sin^6(x) + \cos^6(x) - 2\sin^4(x)$$

$$6. \frac{\sin(3x)}{\sin(x)} + \frac{\cos(3x)}{\cos(x)}$$

7.
$$\sin(x) + \sin\left(x + \frac{2\pi}{3}\right) + \sin\left(x + \frac{4\pi}{3}\right)$$

8.
$$\sin^4(x) - \cos^4(x) + \cos^2(x) - \sin^2(x)$$

9.
$$\sin^4(x) (3 - 2\sin^2(x)) + \cos^4(x) (3 - 2\cos^2(x))$$

10.
$$\sin^6(x) + \cos^6(x)$$
 et résoudre $\sin^6(x) + \cos^6(x) = \frac{3}{8}$

Exercice 8:

- 1. Simplifier l'expression $\frac{1 + \tan(x)}{1 \tan(x)}$.
- 2. Montrer que $\tan\left(\frac{7\pi}{12}\right) = \frac{1+\sqrt{3}}{1-\sqrt{3}};$

Exercice 9 : Sachant que $\tan(x) = \sqrt{\frac{a-b}{a+b}}$, où $(a,b) \in (\mathbb{R}_+)^2$, calculer $\cos(x)$ et $\sin(x)$.

II/ Équations et inéquations trigonométriques _____

Exercice 10 : Résoudre dans \mathbb{R} les équations suivantes et placer les solutions sur le cercle trigonométrique :

1.
$$\cos(x) = -\frac{1}{2}$$

$$6. \ \frac{\sin(x)}{\cos(x)} = \frac{\sqrt{3}}{3}$$

11.
$$\cos^2(x) - \sin^2(x) = \cos\left(4x - \frac{\pi}{4}\right)$$

2.
$$\sin(3x) = -\frac{\sqrt{3}}{2}$$
.

$$7. \sin\left(3x - \frac{\pi}{3}\right) = -\frac{\sqrt{2}}{2}$$

12.
$$\sin(x)\cos(x) = \frac{1}{4}$$

13. $4\cos^2(x) - 1 = 0$

$$3. \cos(x) = \cos\left(x + \frac{\pi}{4}\right)$$

8.
$$\sin\left(2x - \frac{\pi}{4}\right) = \cos(x)$$

14.
$$\sqrt{1 - \sin^2(x)} + \sin(x) = \sqrt{2}$$

$$4. \cos\left(x + \frac{\pi}{3}\right) = -1$$

9.
$$\sin^2(x) - 5\sin(x) + 6 = 0$$

15.
$$\cos^2(x) + 2\cos(x) - 3 = 0$$

$$5. \sin(3x) = \cos(2x)$$

$$10. \cos(x) + \sin(x) = 1$$

16.
$$\sqrt{2}\sin(x) - \sqrt{6}\cos(x) = 2$$

Exercice 11 : Résoudre dans $\mathbb R$ les inéquations suivantes et placer les solutions sur le cercle trigonométrique :

1.
$$\sin(x) \leqslant \frac{\sqrt{3}}{2}$$

2.
$$\cos(x) \ge -\frac{1}{2}$$

3.
$$\cos(x) < 0$$

$$4. \cos\left(x + \frac{\pi}{3}\right) \leqslant \frac{\sqrt{2}}{2}$$

$$5. \sin(4x) \geqslant -\frac{\sqrt{3}}{2}$$

6.
$$2\cos^2(x) - 3\cos(x) + 1 \ge 0$$

7.
$$2\sin^2(x) + 5\sin(x) + 2 < 0$$

8.
$$\cos^2(x) - \left(3 + \frac{\sqrt{2}}{2}\right)\cos(x) + \frac{3\sqrt{2}}{2} \leqslant 0$$

9.
$$\cos(x) + \sqrt{3}\sin(x) + \sqrt{3} > 0$$

10.
$$4\sin^2(x) - 3 \le 0$$

$$11. \sin(2x) > \cos(x)$$

12.
$$\sin(2x) + \cos(2x) > 0$$

Exercice 12 : Résoudre dans $]-\pi$; π] l'équation :

$$\frac{\sqrt{3}}{2}\cos(2x) + \frac{1}{2}\sin(2x) = \cos\left(\frac{\pi}{7}\right).$$

Exercice 13 : Résoudre tan(x) tan(4x) = -1

III/ Fonctions trigonométriques ____

Exercice 14 : Étudier la parité des fonctions suivantes :

$$\begin{array}{ll} f: x \longmapsto & \sin(x) - \cos(x) \\ g: x \longmapsto & \sin^2(x) - \sin(2x)\sin(3x) \\ h: x \longmapsto & \frac{\sin(x)}{\cos(x)} \\ i: x \longmapsto & x \frac{\sin(x)}{\cos(x)} \end{array} \qquad \begin{array}{ll} j: x \longmapsto & \left(\sin\left(\frac{1}{3}x\right) - \sin\left(\frac{1}{5}x\right)\right)^2. \\ k: x \longmapsto & \frac{\cos(2x)}{\cos^2(x) + 1} \end{array}$$

Exercice 15 : Vérifier que la fonction f est T-périodique.

$$\begin{split} f_1(x) &= \frac{\sin(x)}{\cos(x)} \text{ avec } \mathbf{T} = \pi \\ f_2(x) &= \cos^2(x) - \sin^2(x) \text{ avec } \mathbf{T} = \pi \\ f_3(x) &= \sin\left(10\pi x\right) \text{ avec } \mathbf{T} = 0, 2. \end{split} \qquad \begin{aligned} f_5(x) &= \sin\left(\frac{10x-1}{3}\right) \text{ avec } \mathbf{T} = \frac{3\pi}{5} \\ f_6(x) &= \frac{2}{5}\cos(3\pi x) \text{ avec } \mathbf{T} = \frac{2}{3} \\ f_7(x) &= \sin\left(3x - \frac{\pi}{6}\right) \text{ avec } \mathbf{T} = \frac{2\pi}{3} \end{aligned}$$

Exercice 16 : Sans se préoccuper des domaines de définition, proposer un domaine d'étude minimal pour les fonctions suivantes :

$$f: x \longmapsto \sin(2x) \qquad \qquad h: x \longmapsto \frac{\sin(x)}{\cos(x)} \qquad \qquad j: x \longmapsto \left(\sin\left(\frac{1}{3}x\right) - \sin\left(\frac{1}{5}x\right)\right)^2.$$

$$g: x \longmapsto \sin(x) - \cos(x) \qquad \qquad i: x \longmapsto \frac{x \sin(x)}{\cos(x)} \qquad \qquad k: x \longmapsto \frac{\cos(2x)}{\cos^2 x + 1}$$

Exercice 17 : Sans se préoccuper du domaine de dérivabilité, déterminer la dérivée des fonctions suivantes :

$$\begin{array}{lll} f_1(x) = \cos(x)\sin(x) & f_6(x) = \frac{\cos(x)}{x + \sin(x)} & f_9(x) = (5x - 3)^3\cos(x) \\ f_2(x) = \sin(x^2) & f_{10}(x) = (3x^2 - 2)\sin^2(x) \\ f_3(x) = \cos^2(x) & f_{10}(x) = \frac{\cos(x) + 2}{\sin^2(x) + 2} & f_{11}(x) = \sin\left(3x - \frac{\pi}{4}\right) \\ f_5(x) = \frac{3}{2\cos(x)} & f_8(x) = \frac{2\cos(x) + 3}{2\cos(x) - 3} & f_{12}(x) = \frac{2\cos(2x)}{3 - \sin(1 - x)} \end{array}$$

Exercice 18: Pour tout $x \in [0; +\infty[$, montrer successivement que:

1. (a)
$$\sin(x) \leqslant x$$
. (c) $x - \frac{x^3}{6} \leqslant \sin(x)$.
 (b) $1 - \frac{x^2}{2} \leqslant \cos(x)$. (d) $\cos(x) \leqslant 1 - \frac{x^2}{2} + \frac{x^4}{4!}$.

2. En déduire que $\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = \frac{1}{2}$.

Exercice 19 : Soit la fonction f définie sur \mathbb{R} par $f(x) = 2\sin(3x) - 5\cos(3x)$.

Établir une relation entre les fonctions f et f''.

Exercice 20 : Étudier la fonction f, définie sur \mathbb{R} par :

$$f(x) = \frac{1}{2}\cos(2x) - \cos(x).$$

(Domaine de définition, périodicité, parité, domaine d'étude, variation, ...)

Exercice 21 : Soit f la fonction définie par :

$$f(x) = \frac{\cos(x)}{1 + \sin(x)}.$$

- 1. Déterminer le domaine de définition de f ainsi qu'un domaine d'étude minimal.
- 2. Déterminer les limites aux bornes du domaine d'étude.
- 3. Donner le sens de variation de f sur $\left] -\frac{\pi}{2}; \frac{3\pi}{2} \right[$.

Exercice 22 : Soit
$$f: x \mapsto \frac{\sin(x)}{\sin(x) + \cos(x)}$$
.

- 1. Déterminer le domaine de définition D de f.
- 2. Montrer que f est périodique de période π .

3. Montrer que A $\left(\frac{\pi}{4}; \frac{1}{2}\right)$ est un centre de symétrie de \mathscr{C}_f .

En déduire un domaine d'étude minimal de I.

- 4. Étudier les variations de f sur I et donner une équation de la tangente à \mathscr{C}_f en A. Préciser les intersections de \mathscr{C}_f avec (Ox).
- 5. Montrer que 5 admet un unique antécédent par f sur $\left] -\frac{\pi}{4}; \frac{3\pi}{4} \right[$.

En donner une valeur approchée à 10^{-3} près.

Exercice 23 : Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = \sin(x) + x$.

On note \mathcal{C}_f la courbe de f dans un repère orthonormé.

- 1. Montrer que f est impaire.
- 2. Montrer que \mathscr{C}_f est invariante par translation de vecteur $\vec{u}\left(2\pi;2\pi\right)$.
- 3. Étudier les variations de f sur $[0; \pi]$.
- 4. Déterminer les limites de f en $\pm \infty$.
- 5. En se servant des questions précédentes, représenter \mathscr{C}_f sur $[-\pi; 5\pi]$.

Exercice 24: Étudier les fonctions $f: x \mapsto x - \tan(x)$ et $g: x \mapsto \sqrt{\tan(2x)}$.

IV/ Fonctions circulaires réciproques _____

Exercice 25 : Simplifier :

1.
$$\arccos\left(\sin\left(\frac{2\pi}{3}\right)\right)$$
 2. $\arccos\left(\cos\left(\frac{2\pi}{3}\right)\right)$ 3. $\arccos\left(\cos\left(\frac{-2\pi}{3}\right)\right)$ 4. $\arccos\left(\cos(4\pi)\right)$

Exercice 26 : Simplifier
$$\arctan\left(\tan\left(\frac{3\pi}{4}\right)\right)$$

Exercice 27 : Déterminer la valeur exacte de
$$\sin\left(\frac{1}{2}\arcsin\left(\frac{1}{3}\right)\right)$$
.

Exercice 28 : Vérifier que
$$\arcsin\left(\frac{5}{13}\right) + \arcsin\left(\frac{3}{5}\right) = \arcsin\left(\frac{56}{65}\right)$$

Exercice 29: Simplifier au maximum les expressions suivantes:

- 1. $\sin(\arcsin(x) + \arcsin(y))$
- 2. $tan(2 \arctan(x))$.
- 3. $\cos(2\arccos(x))$.
- 4. $tan(2 \arcsin(x))$.

- 5. $\cos(\arcsin(x))$. En déduire $\tan(\arcsin(x))$.
- 6. $\sin(\arccos(x))$. En déduire $\tan(\arccos(x))$.
- 7. $\cos(\arctan(x))$. En déduire $\sin(\arctan(x))$.
- 8. $\arcsin\left(2x\sqrt{1-x^2}\right)$

Exercice 30 : Résoudre les équations suivantes :

1.
$$\arcsin(x) = \arcsin\left(\frac{4}{5}\right)$$
.

2.
$$\arcsin(x) = \arcsin\left(\frac{4}{5}\right) + \arcsin\left(\frac{5}{13}\right)$$
.

3. $\arcsin(x) + \arccos(x\sqrt{2}) = \frac{\pi}{4}$.

- 4. $\arcsin(x) + \arcsin(x\sqrt{3}) = \frac{\pi}{2}$
- 5. $\arcsin(x^2 x + 1) = \frac{\pi}{2}$.
- 6. $\arcsin(2x) \arcsin(x\sqrt{3}) = \arcsin(x)$.

Exercice 31 : Pour $n \in \mathbb{N}$, on pose $f_n(x) = \cos(n \arccos(x))$.

- 1. Donner l'expression de f_0 , f_1 et f_2 en fonction de x.
- 2. Montrer que, $\forall n \in \mathbb{N}$, f_n est une fonction polynomiale.

Exercice 32:

- 1. Résoudre l'équation : cos(4x) = -sin(x).
- 2. Soit $x_0 = \arcsin\left(\frac{1+\sqrt{5}}{4}\right)$. Calculer $\cos\left(4x_0\right)$ à partir de $\cos(2x_0)$ et $\cos(x_0)$.
- 3. En déduire x_0 .

Exercice 33 : Pour chacune des fonctions suivantes, donner le domaine de définition, l'ensemble de dérivabilité et calculer la dérivée.

$$f_1: x \longmapsto \, \arcsin(x) + \arcsin(x\sqrt{2})$$

$$f_2: x \longmapsto \arcsin\left(\frac{x}{\sqrt{1+x^2}}\right)$$

$$f_3: x \longmapsto \arccos\left(\frac{1}{\sqrt{1+x^2}}\right)$$

$$f_4: x \longmapsto x \arcsin(x) + \sqrt{1 - x^2}$$

 $f_5: x \longmapsto \arcsin(2x\sqrt{1 - x^2})$

Exercice 34 : Étudier les fonctions suivantes :

$$\begin{split} f_1: x &\longmapsto \, \arcsin(\cos(x)) + \arccos(\sin(x)). \\ f_2: x &\longmapsto \, \arccos(\cos(x)) + \frac{1}{2}\arccos(\cos(2x)). \end{split}$$

$$f_3: x \longmapsto \arcsin\left(\sqrt{\frac{1+\sin(2x)}{2}}\right).$$

Exercice 35 : Montrer que le sinus et le cosinus d'angle α sont des nombres rationnels si, et seulement si $\tan\left(\frac{\alpha}{2}\right)$ n'est pas défini ou est aussi rationnel.

Exercice 36: Montrer que:

1.
$$\arccos\left(\frac{5}{13}\right) = 2\arctan\left(\frac{2}{3}\right)$$

2.
$$\arctan\left(\frac{-\frac{1}{2}}{2}\right) + 2\arctan\left(\frac{1}{2}\right) = \frac{\pi}{2}$$

5.
$$\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$$

6.
$$4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) = \frac{\pi}{4}$$

3.
$$\arctan(2\sqrt{2}) + 2\arctan(\sqrt{2}) = \pi$$

4.
$$\arctan\left(\frac{2013 - \frac{1}{2013}}{2}\right) + 2\arctan\left(\frac{1}{2013}\right) = \frac{\pi}{2}$$

[Hutton, 1776]

[Machin, 1706]

Exercice 37 : Résoudre, sur \mathbb{R} , les équations :

1.
$$\arctan(2x) + \arctan(3x) = \frac{\pi}{4}$$
.

$$2. \ \arctan(3-x) + \arctan\left(4-\frac{1}{x}\right) = \frac{3\pi}{4}.$$

3.
$$\arctan\left(\frac{x}{2(1-x^2)}\right) = \arcsin(x)$$

4.
$$\arctan(x) + \arctan(2x) = \frac{\pi}{4}$$
.

Exercice 38:

- 1. Montrer que si 0 < ab < 1, alors $\arctan(a) + \arctan(b) = \arctan\left(\frac{a+b}{1-ab}\right)$.
- 2. Calculer $\arctan(2) + \arctan(5) + \arctan(8)$.
- 3. Résoudre dans \mathbb{R} l'équation : $\arctan(x) + \arctan(x+3) + \arctan(x-3) = \frac{\pi}{4}$.

Exercice 39: Tracer la courbe de la fonction $x \mapsto \arcsin(\sin(x))$.

Exercice 40: Tracer la courbe de la fonction $x \mapsto \arctan(\tan(x))$ sur \mathbb{R} .

Exercice 41:

- 1. Exprimer $\tan(x-y)$ en fonction de $\tan(x)$ et $\tan y$.
- 2. En déduire que pour tous réels $a \ge 0$ et $b \ge 0$, $\arctan(a) \arctan(b) = \arctan\left(\frac{a-b}{1+ab}\right)$.
- 3. Vérifier l'égalité $\frac{2}{k^2}=\frac{(k+1)-(k-1)}{1+(k-1)(k+1)}.$
- 4. Déduire des résultats précédents la convergence de la suite $(u_n)_{n \ge 1}$ définie par

$$u_n = \sum_{k=1}^n \arctan\left(\frac{2}{k^2}\right).$$

Exercice 42 : Calculer et simplifier les dérivées des fonctions suivantes :

- 1. $f(x) = \arctan(x-1) + \arctan(x) + \arctan(x+1)$
- 2. $f(x) = \cos^2\left(\frac{1}{2}\arctan(x)\right)$

Exercice 43 : Donner le domaine de définition, l'ensemble des points où elle est dérivable et calculer la dérivée de la fonction f définie par :

$$f(x) = 2\arctan\left(\sqrt{\frac{1-x}{1+x}}\right) + \arcsin(x).$$

Exercice 44 : Montrer que
$$\forall\,x>0,\,\arctan(\sh{(x)})=\arccos{\left(\frac{1}{\ch{(x)}}\right)}.$$