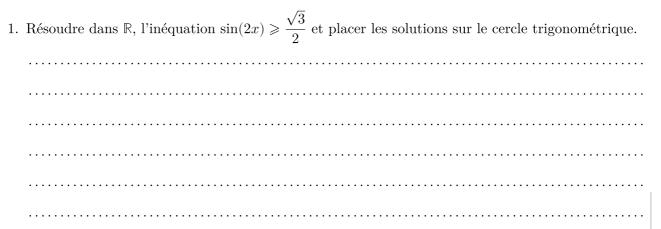
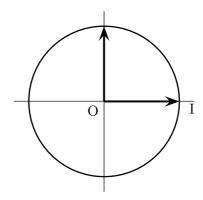

Fonctions circulaires - Nombres complexes

Nom: Prénom:


2. Après avoir donné le domaine de définition, exprimer $G = \frac{\cos(x)}{1 + \sin(x)}$ en fonction de $u = \tan\left(\frac{x}{2}\right)$.


.....

3.	Résoudre sur \mathbb{R} , l'équation $\sin^2(x) + 2\sin(x) - 3 = 0$.							
4.	Donner le domaine de définition puis simplifier l'expression $\cos(\arcsin(x))$. En déduire $\tan(\arcsin(x))$.							
5.	Donner la partie imaginaire de $\frac{1}{2+3i}$.							
6.	En posant $z=x+\mathrm{i}y,$ déterminer l'ensemble des complexes z tels que $\frac{z-2}{z+\mathrm{i}}\in\mathbb{R}.$							

Fonctions circulaires - Nombres complexes

Nom: Prénom:

2.	Après avoir	r donné le d	omaine de	définition,	exprimer	$D = \frac{\sin(a)}{1 + \cos(a)}$	$\frac{x}{s(x)}$ en fon	ction de u	$=\tan\left(\frac{x}{2}\right)$

3.	Résoudre sur \mathbb{R} , l'équation $\cos^2(x) + 2\cos(x) - 3 = 0$.								
4.	Donner le domaine de définition puis simplifier l'expression $\sin(\arccos(x))$. En déduire $\tan(\arccos(x))$.								
5.	Donner la partie réelle de $\frac{1}{4-3\mathrm{i}}$.								
6.	En posant $z=x+\mathrm{i}y,$ déterminer l'ensemble des complexes z tels que $\frac{z-2}{z+\mathrm{i}}\in\mathrm{i}\mathbb{R}.$								