PTSI VINCI - 2025 PLANCHE 71.

Planche 71/ _

Exercice 1

Déterminer les développements en série entières des fonctions : $x \mapsto \ln(2+x)$ et $x \mapsto \ln\left(\frac{1+x}{1-x}\right)$.

Correction: La fonction $x \mapsto \ln(1+x)$ est développable en série entière si, et seulement si $x \in]-1;1[$.

La fonction $x \mapsto \ln(2+x) = \ln(2) + \ln\left(1+\frac{x}{2}\right)$ est donc développable en série entière si, et seulement si $x \in]-2$; 2[et on a :

$$\forall x \in]-2; 2[, \ln(2+x) = \ln(2) + \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{x^k}{k2^k} = \ln(2) + \frac{x}{2} - \frac{x^2}{4} + \dots.$$

La fonction $x \mapsto \ln\left(\frac{1+x}{1-x}\right)$ est définie si, et seulement si $\frac{1+x}{1-x} > 0$ i.e. $x \in]-1\,;1[$

Sur cet intervalle 1+x>0 et 1-x>0 donc $\ln\left(\frac{1+x}{1-x}\right)=\ln\left(1+x\right)-\ln\left(1-x\right)$ somme de deux fonctions développables en séries entières sur $]-1\,;1[$ et on a :

$$\forall \, x \, \mathbf{i} \, \,] - 1 \, ; \, \mathbf{1} [\, , \, \ln \left(\frac{1+x}{1-x} \right) = \ln \left(1+x \right) - \ln \left(1-x \right) = \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{x^k}{k} - \sum_{k=1}^{+\infty} \frac{x^k}{k} \\ = 2 \sum_{n=1}^{+\infty} \frac{x^{2p+1}}{2p+1} .$$

Remarque : En reconnaissant, si c'était au programme, que $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)=\operatorname{argth}\left(x\right)$ dont la dérivée

est $x \longmapsto \frac{1}{1-x^2}$ on aurait pu avoir le développement en série entière directement en intégrant celui de sa dérivée pour trouver la même chose sur le même intervalle]-1;1[.

Exercice 2

$$(a,b)\in\mathbb{R}^2,\,\mathrm{soit}\,\,\mathrm{M}_{a,b}=\left(\begin{array}{cccc}b&a&\cdots&a\\a&b&\ddots&\vdots\\\vdots&\ddots&\ddots&a\\a&\cdots&a&b\end{array}\right)\in\mathcal{M}_n(\mathbb{R})\quad(n\geqslant2).$$

Déterminer le rang de la matrice $M_{a,b}$.

Correction : La matrice est à coefficients réels et symétrique donc, d'après le théorème spectral, elle est semblable à une matrice diagonale *i.e.* $\exists P \in \mathscr{G}l(\mathbb{R}^n)$ (inversible) et D diagonale telles que $M_{a,b} = PDP^{-1}$.

Une matrice inversible ne changeant pas le rang, il est plus facile de trouver celui de la matrice diagonale. On cherche donc les valeurs propres de $M_{a,b}$.

PLANCHE 71. PTSI VINCI - 2025

On a:

$$\begin{split} \mathbf{P}_{\mathbf{M}_{a,b}}(\mathbf{X}) &= \det \left(\mathbf{M}_{a,b} - \mathbf{X} \mathbf{I}_n\right) \\ &= \begin{vmatrix} b - \mathbf{X} & a & \cdots & a \\ a & b - \mathbf{X} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ a & \cdots & a & b - \mathbf{X} \end{vmatrix} \\ &= \left((n-1)a + b - \mathbf{X}\right) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a & b - \mathbf{X} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ a & \cdots & a & b - \mathbf{X} \end{vmatrix} \quad \mathbf{L}_1 \leftarrow \mathbf{L}_1 + \sum_{i=2}^n \mathbf{L}_i \\ &= \left((n-1)a + b - \mathbf{X}\right) \begin{vmatrix} 1 & 0 & \cdots & 0 \\ a & b - a - \mathbf{X} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a & \cdots & 0 & b - a - \mathbf{X} \end{vmatrix} \quad \mathbf{C}_i \leftarrow \mathbf{C}_i - \mathbf{C}_1 \\ &= \left((n-1)a + b - \mathbf{X}\right)(b - a - \mathbf{X})^{n-1} \quad \text{On développe par rapport à la première ligne puis matrice diagonale.} \end{split}$$

 $\mathcal{M}_{a,b}$ admet donc deux valeurs propres $\lambda_1=(n-1)a-b$ simple et $\lambda_2=b-a$ de multiplicité n-1.

Conclusion,

- Si a=b, $\mathrm{M}_{a,b}$ est de rang 1 car semblable à une matrice où seul le coefficient en haut à gauche et non nul.
- Si b=(n-1)a, $\mathrm{M}_{a,b}$ est de rang n-1 car semblable à une matrice où tous les termes diagonaux sont non nuls sauf celui en haut à gauche.

2

Lycée Jules Garnier F. PUCCI