PTSI VINCI - 2025 PLANCHE 135.

Planche 135/ _____

Exercice 1

Étudier $f(x) = \int_{x}^{x^2} \frac{e^{-t^2}}{t} dt$ pour x > 0.

Comme pour x>0, $\left[x\,;x^2\right]\subset\mathbb{R}^*$, pour $a\in\mathbb{R}^*$ quelconque, d'après le théorème fondamental de l'analyse, la fonction $\mathrm{F}:x\longmapsto\int_a^x\frac{\mathrm{e}^{-t^2}}{t}\,\mathrm{d}t$ est de classe \mathscr{C}^1 sur \mathbb{R}^* .

La fonction $x \longmapsto x^2$ étant, elle aussi de classe \mathscr{C}^1 sur \mathbb{R}^* , d'après les théorèmes sur les composées de fonctions de classe \mathscr{C}^1 , la fonction f définie par $f(x) = \mathrm{F}(x^2) - \mathrm{F}(x)$ est de classe \mathscr{C}^1 sur \mathbb{R}^* et on a :

$$\begin{split} \forall \, x \in \mathbb{R}^*, \, \, f'(x) &= 2x \mathcal{F}'(x^2) - \mathcal{F}'(x) = 2x \varphi(x^2) - \varphi(x) = 2x \frac{\mathrm{e}^{-x^4}}{x^2} - \frac{\mathrm{e}^{-x^2}}{x} \\ &= \frac{2\,\mathrm{e}^{-x^4} - \,\mathrm{e}^{-x^2}}{x}. \end{split}$$

Reste à trouver le signe de la dérivée pour avoir les variations de f.

Commentaires : Honnêtement, vu ce qui suit, je pense que l'exercice s'arrête là. Après ce n'est plus trop de votre niveau. Essayez juste de comprendre sans vous stresser.

On résout alors l'équation,

$$2e^{-x^4} \ge e^{-x^2} \\ -x^4 + \ln(2) \ge -x^2 \\ -x^4 + x^2 + \ln(2) \ge 0$$

 $\text{En posant } \mathbf{X} = x^2 \text{, on factorise} - \mathbf{X}^2 + \mathbf{X} + \ln(2) = -\left(\mathbf{X} - \underbrace{\frac{1 + \sqrt{1 + 4\ln(2)}}{2}}_{=x_0^2}\right) \left(\mathbf{X} \underbrace{-\frac{1 - \sqrt{1 + 4\ln(2)}}{2}}_{>0}\right) \left($

$$-\left(x-x_{0}\right)\left(x+x_{0}\right)\left(x^{2}+\frac{\sqrt{1+4\ln(2)}-1}{2}\right)\geqslant0$$

Du signe de
$$-\left(x-x_{0}\right)\left(x+x_{0}\right)$$
 avec $x_{0}=\sqrt{\frac{1+\sqrt{1+4\ln(2)}}{2}}\simeq1,2.$

Il ne reste plus qu'à faire un tableau de signes pour avoir celui de la dérivée.

PLANCHE 135. PTSI VINCI - 2025

x	$-\infty$	$-x_0$	-1	0	1 x_0	+~
$\frac{2e^{-x^2}}{x}$	_		-	+		+
$2e^{-x^4} - e^{-x^2}$	_	0	+	1 +	0	_
F'(x)	+	0	-	+	0	-
F	0	$F(-x_0) > 0$ $\int_{-1}^{1} \frac{e^{-t}}{t}$	$\frac{t^2}{-\infty} dt = 0$		$F(x_0) > \frac{1}{2}$ $- dt = 0$	0

Comme
$$t \longmapsto \frac{e^{-t^2}}{t}$$
 est impaire, on a $\int_{-1}^1 \frac{e^{-t^2}}{t} \, \mathrm{d}t = 0.$

Pour les limites en 0, on peut majorer $\frac{e^{-t^2}}{t}$ par $\frac{1}{t}$ pour avoir

$$F(x) \leqslant \int_{x}^{x^2} \frac{1}{t} dt = \ln|x| \xrightarrow[x \to 0]{} -\infty.$$

Donc $\lim_{x\to 0} \mathrm{F}(x) = -\infty$ et la courbe de F admet l'axe des ordonnées comme asymptote.

Pour la limite en $+\infty$, on commence par poser t=xu pour se débarrasser de x dans une des deux bornes :

$$0 \leqslant F(x) = \int_{x}^{x^{2}} \frac{e^{-t^{2}}}{t} dt = \int_{1}^{x} \frac{e^{-(xu)^{2}}}{xu} x du = \int_{1}^{x} \frac{e^{-(xu)^{2}}}{u} du$$

Ensuite, on majore $\frac{1}{u}$ par 1 et $e^{-(xu)^2}$ par e^{-x^2u} ,

$$\leqslant \int_{1}^{x} e^{-x^{2}u} du = \left[-\frac{1}{x^{2}} e^{-x^{2}u} \right]_{1}^{x}$$
$$= \frac{1}{x^{2}} e^{-x^{2}} - \frac{1}{x^{2}} e^{-x^{3}} \xrightarrow[x \to +\infty]{} 0.$$

Donc $\lim_{x\to +\infty} \mathrm{F}(x)=0$ et la courbe de F admet l'axe des abscisses comme asymptote en $+\infty.$

Enfin, pour la limite en $-\infty$, on fait pareil et on trouve pareil : $\lim_{x\to -\infty} F(x)=0$ et la courbe de F admet l'axe des abscisses comme asymptote en $-\infty$.

2

Lycée Jules Garnier

PTSI VINCI - 2025 PLANCHE 135.

Exercice 2

- 1. Racines quatrièmes de -1. Qu'est-ce que cela représente géométriquement?
- 2. En déduire une factorisation du polynôme $X^4 + 1 \in \mathbb{R}[X]$.

Correction:

1. D'abord trouver une racine « primitive » de $-1={\rm e}^{{\rm i}\,\pi}:\omega_0={\rm e}^{{\rm i}\,\frac{\pi}{4}}$ convient.

Pour trouver toutes les racines de -1, on multiplie ω_0 par les racines quatrièmes de l'unité $\mathrm{e}^{\mathrm{i} \frac{2k\pi}{4}}$, $k \in [0, 3]$ i.e. $e^{i0} = 1$, $e^{i\frac{2\pi}{4}} = i$, $e^{i\frac{4k\pi}{4}} = -1$ et $e^{i\frac{6\pi}{4}} = -i$

Les racines quatrièmes de -1 sont donc

•
$$\omega_0 = e^{i\frac{\pi}{4}} = \frac{1}{\sqrt{2}}(1+i),$$

•
$$-\omega_0 = e^{i\frac{\pi}{4}+\pi} = e^{-i\frac{3\pi}{4}} = \frac{1}{\sqrt{2}}(-1-i)$$
,

•
$$i\omega_0 = e^{i(\frac{\pi}{4} + \frac{\pi}{2})} = e^{i\frac{3\pi}{4}} = \frac{1}{\sqrt{2}}(-1 + i)$$
,

•
$$i\omega_0 = e^{i(\frac{\pi}{4} + \frac{\dot{\pi}}{2})} = e^{i\frac{3\pi}{4}} = \frac{1}{\sqrt{2}}(-1 + i)$$
, • $-i\omega_0 = e^{i(\frac{\pi}{4} - \frac{\pi}{2})} = e^{-i\frac{\pi}{4}} = \frac{1}{\sqrt{2}}(1 - i)$.

Ce sont les sommets d'un carré inscrit dans le cercle unité passant par les points d'affixes $\frac{1}{\sqrt{2}}(\pm 1 \pm i).$

2. D'après la question précédente, on a :

$$\begin{split} \mathbf{X}^4 + \mathbf{1} &= \left(\mathbf{X} - \omega_0\right) \left(\mathbf{X} - \mathrm{i}\,\omega_0\right) \left(\mathbf{X} + \omega_0\right) \left(\mathbf{X} + \mathrm{i}\,\omega_0\right) \\ &= \left(\mathbf{X} - \frac{1}{\sqrt{2}}\left(1 + \mathrm{i}\,\right)\right) \left(\mathbf{X} - \frac{1}{\sqrt{2}}\left(-1 + \mathrm{i}\,\right)\right) \left(\mathbf{X} - \frac{1}{\sqrt{2}}\left(-1 - \mathrm{i}\,\right)\right) \left(\mathbf{X} - \frac{1}{\sqrt{2}}\left(1 - \mathrm{i}\,\right)\right). \end{split}$$

Ça c'est la facorisation dans $\mathbb{C}[X].$ On regroupe maintenant les termes conjugués :

$$\begin{split} &= \left(X - \frac{1}{\sqrt{2}} \left(1 + i \right) \right) \left(X - \frac{1}{\sqrt{2}} \left(- 1 + i \right) \right) \left(X - \overline{\frac{1}{\sqrt{2}}} \left(- 1 + i \right) \right) \left(X - \overline{\frac{1}{\sqrt{2}}} \left(1 + i \right) \right) \\ &= \underbrace{\left(X - \frac{1}{\sqrt{2}} \left(1 + i \right) \right) \left(X - \overline{\frac{1}{\sqrt{2}}} \left(1 + i \right) \right) \left(X - \overline{\frac{1}{\sqrt{2}}} \left(- 1 + i \right) \right) \left(X - \overline{\frac{1}{\sqrt{2}}} \left(- 1 + i \right) \right)}_{X^2 - 2 \mathrm{Re} \left(\frac{1}{\sqrt{2}} \left(- 1 + i \right) \right) + \left| \frac{1}{\sqrt{2}} \left(- 1 + i \right) \right|^2} \\ &= \left(X^2 - 2 \frac{1}{\sqrt{2}} X + 1 \right) \left(X^2 + 2 \frac{1}{\sqrt{2}} X + 1 \right) \\ &= \left(X^2 - \sqrt{2} X + 1 \right) \left(X^2 + \sqrt{2} X + 1 \right) \end{split} \quad \text{Factorisation dans } \mathbb{R}[X]. \end{split}$$

Commentaires : Il est plus élégant de dire que le polynôme X^4+1 est à coefficient réels donc si α est racine, on aura aussi $\overline{\alpha}$ et qu'il est aussi pair donc si α est racine, $-\alpha$ aussi.

À partir d'une seule racine α , on aura alors les quatre : α , $-\alpha$, $\overline{\alpha}$ et $-\overline{\alpha}$ que l'on regroupera pareil. Avec ω_0 , on obtient pareil.

Remarque: Retenez bien que $(X - \alpha)(X - \overline{\alpha}) = X^2 - 2Re(\alpha) + |\alpha|^2$