Analyse asymptotique et dénombrements

Correction de l'exercice 1 – On reprends les notations du devoir surveillé ...

Partie IV: Une seconde suite implicite

19. Le même raisonnement que pour la suite $(x_n)_{n \in \mathbb{N}}$ donne, $\forall n \ge 2$, $f(y_n) = n < n+1 = f(y_{n+1})$. La stricte croissance de f sur $]1; +\infty[$ fait le reste.

Conclusion, la suite $(y_n)_{n\geqslant 2}$ est strictement croissante.

20. D'après le théorème de la limite monotone, la suite $(y_n)_{n\geqslant 2}$ est divergente vers $+\infty$ si, et seulement si elle n'est pas majorée.

Supposons donc le contraire et soit M > 1 tel que $\forall n \in \mathbb{N}, |y_n| \leq M$.

Alors, par définition de $(y_n)_{n\geqslant 2}$, $n=y_n-\ln(y_n)$ entraînerait $n\leqslant 2M$ ce qui n'est pas possible. Donc la suite $(y_n)_{n\geqslant 2}$ n'est pas majorée. Elle diverge donc vers $+\infty$.

$$\lim_{n\to +\infty}y_n=+\infty.$$

21. Par concavité de la fonction $x \mapsto \ln(2x)$, sa courbe rerésentative est sous ses ses tangentes. En particulier celle en 1 d'équation $y = x - (1 - \ln(2))$ ce qui se traduit par :

$$\forall \, x \in \left]0\,; +\infty\right[, \, \ln(2x) \leqslant x - \underbrace{\left(\ln(e) - \ln(2)\right)}_{>0} < x.$$

22. Par stricte croissance de f sur $]1; +\infty[$ donc sur [n; 2n], il suffit de montrer $f(n) = n - \ln(n) < n$ pour $n \ge 2$ et $f(2n) = 2n - \ln(2n) > 2n - n = n > 0$ ce qui est assez clair.

Donc, $\forall n \ge 2, n < y_n < 2n$.

23. Comme $\ln(u) = o(u)$ d'après les théorèmes décroissances comparées, $\lim_{n \to +\infty} y_n = +\infty$ et la définition de $(y_n)_{n\geqslant 2}^n$, $n=y_n-\ln(y_n)$ entraı̂nent :

$$n \underset{n \to +\infty}{=} y_n + \mathrm{o}\left(y_n\right) = y_n \big(1 + \mathrm{o}\left(1\right)\big) \iff y_n \underset{n \to +\infty}{\sim} n.$$

24. Il suffit de réinjecter le résultat précédent dans la définition de y_n :

$$\begin{split} n &= y_n - \ln(y_n) \iff y_n = n + \ln(y_n) \\ &= \underset{n \to +\infty}{=} n + \ln\left(n + \operatorname{o}\left(n\right)\right) \\ &= \underset{n \to +\infty}{=} n + \ln(n) + \ln 1 + \operatorname{o}\left(1\right) \\ &= \underset{n \to +\infty}{=} n + \ln(n) + \operatorname{o}\left(1\right) \end{split}$$

Encore une fois:

$$\begin{split} y_n &= n + \ln(y_n) \\ &= n + \ln\left(n + \ln(n) + \operatorname{o}\left(1\right)\right) \\ &= n + \ln(n) + \ln\left(1 + \underbrace{\frac{\ln(n)}{n} + \operatorname{o}\left(\frac{1}{n}\right)}_{\underset{n \to +\infty}{=} \operatorname{o}\left(1\right)}\right) \\ &= n + \ln(n) + \ln\left(\frac{\ln(n)}{n}\right) + \operatorname{o}\left(\frac{\ln(n)}{n}\right). \end{split}$$

Correction de l'exercice 2 -

1. Nombre de résultats en tout :

10⁵ résultats en tout.

2. Les cinq boules sont toutes de la même couleur :

- 5 boules jaunes : 1⁵ possibilité.
- -5 boules bleues : 2^5 possibilités.
- 5 boules rouges : 3⁵ possibilités.
- 5 boules vertes : 4⁵ possibilités.

En tout:

$$1^5 + 2^5 + 3^5 + 4^5 = 1$$
 300 résultats monochromes.

3. les quatre couleurs apparaissent parmi les cinq boules :

Il y a donc deux boules de la même couleur et une boule de chaque autre couleur. On discute selon la couleur représentée en double.

- 2 boules jaunes:
 - -1^2 choix de boules jaunes (deux fois la boule 1);
 - $-\binom{5}{2}$ manières de placer des deux boules jaunes;
 - $-\begin{pmatrix} 2\\1 \end{pmatrix}$ choix de la boule bleue;
 - $-\binom{3}{1}$ choix de la boule rouge;
 - $-\begin{pmatrix} 4\\1 \end{pmatrix}$ choix de la boule verte;
 - 3! manière de placer ces trois boules.

 $\underline{\text{Bilan}}: 1^2 \times \binom{5}{2} \binom{2}{1} \binom{3}{1} \binom{4}{1} 3! = 10 \times 2 \times 3 \times 4 \times 6 = 1440 \text{ possibilit\'es avec deux boules jaunes.}$

- 2 boules bleues : $2^2 \times {5 \choose 2} {1 \choose 1} {3 \choose 1} {4 \choose 1} 3! = 2880$ possibilités.
- 2 boules rouges: $3^2 \times {5 \choose 2} {1 \choose 1} {2 \choose 1} {4 \choose 1} 3! = 4320$ possibilités.
- 2 boules vertes : $4^2 \times {5 \choose 2} {1 \choose 1} {2 \choose 1} {3 \choose 1} 3! = 5760$ possibilités.

Donc, 14 400 résultats polychromes.

4. La boule numéro 8 a été tirée et exactement deux des boules tirées sont rouges.

La boule 8 n'est pas rouge.

Elle doit être tirée, et apparaît donc 1, 2 ou 3 fois.

Si on tire la boule 8 exactement 3 fois :

- manières de placer la boule 8;
- 3 choix de la boule rouge pour le premier emplacement libre;
- 3 choix de la boule rouge pour le deuxième emplacement libre.

$$\binom{5}{3} \times 3^2 = 10 \times 9 = 90 \text{ possibilités.}$$

Si on tire la boule 8 exactement 2 fois :

- $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$ manières de placer la boule 8; $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ manières de placer les boules rouges;
- 3^2 choix des boules rouges.
- 6 choix de la dernière boule ni 8 ni rouge.

$$\binom{5}{2}\binom{3}{2}\times 3^2\times 6=10\times 3\times 9\times 6=1 \ 620 \ \text{possibilit\'es}.$$

Si on tire la boule 8 exactement 1 fois :

- manières de placer la boule 8;
- manières de placer les boules rouges;
- 3^2 choix des boules rouges.
- 6 choix de la première boule ni 8 ni rouge (1ère place).
- 6 choix de la deuxième boule ni 8 ni rouge (2ème place).

$$\binom{5}{1}\binom{4}{2} \times 3^2 \times 6^2 = 5 \times 6 \times 9 \times 6^2 = 9720$$
 possibilités.

Bilan:

- 3 fois la boule 8 : 90 possibilités.
- 2 fois la boule 8 : 1 620 possibilités.

— 1 fois la boule 8 : 9 720 possibilités.

Donc, $11\ 430$ résultats avec 2 boules rouges et la boule 8 tirée.

Lycée Jules Garnier F. PUCCI

F. PUCCI Lycée Jules Garnier