Dimension finie

Dimension finie

I/ Familles libres, liées. Bases

Exercice 1: Soient u = (1; 2; 3), v = (0; 1; 2) et w = (0; 0; 1).

- 1. Montrer que (u; v; w) est libre.
- 2. Trouver la décomposition de (5,6,7) comme combinaison linéaire de u,v,w.

Exercice 2 : Dans le \mathbb{R} -ev \mathbb{R}^2 , on considère $v_1=(1\,;2),\,v_2=(3\,;1)$ et $v_3=(-5\,;0).$

 $\text{Montrer que vect}\,(v_1,v_2)=\text{vect}\,(v_1,v_2,v_3).$

Exercice 3 (Classiques):

- 1. La famille ((5, -2, -3), (4, 1, -3), (-2, -7, 3)) est-elle libre dans \mathbb{R}^3 ?
- 2. Soient $P_1 = X 1$ et $P_2 = X^2 1$.

Montrer que (P_1, P_2) est une famille libre de $\mathbb{R}[X]$.

3. Soient $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}, (w_n)_{n\in\mathbb{N}}$ les suites réelles définies par :

$$\forall\,n\in\mathbb{N},\,u_n=2^n,\,v_n=3^n,\,w_n=4^n.$$

Montrer que la famille $((u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}, (w_n)_{n\in\mathbb{N}})$ est libre dans $\mathbb{R}^{\mathbb{N}}$.

4. Dans un \mathbb{R} -ev à préciser, montrer que la famille $(x \longmapsto e^x; x \longmapsto e^{2x}; x \longmapsto e^{3x})$ est libre.

Exercice 4 : La famille A engendre-t-elle l'espace vectoriel E?

- 1. A = ((1,1)) et $E = \mathbb{R}^2$
- 2. A = ((1,1)) et $E = \{(x,y) \in \mathbb{R}^2, x y = 0\}$
- 3. A = ((1,1)) et E = $\{(x,y) \in \mathbb{R}^2, x 2y = 0\}$
- 4. A = ((1,1),(1,-1)) et $E = \mathbb{R}^2$
- 5. A = ((1,1), (1,-1), (1,0)) et $E = \mathbb{R}^2$
- 6. A = ((1,0,1),(0,1,1)) et $E = \{(x,y,z) \in \mathbb{R}^3, x+y-z=0\}$

Exercice 5 : Soit $E=\{(x,y,z)\in\mathbb{R}^3, \exists (\alpha,\beta)\in\mathbb{R}^2, x=2\alpha-5\beta, y=-\alpha+3\beta, z=7\beta\}.$

Montrer que E est un sev de \mathbb{R}^3 , et que tout élément de E est combinaison linéaire de deux éléments qu'on déterminera.

Exercice 6 : Dans le \mathbb{R} -ev $\mathbb{R}_2[X]$, on considère le sev $F = \{P \in \mathbb{R}_2[X] / P(1) = P(-1) = 0.\}$.

Montrer que F est une droite vectorielle engendrée par un polynôme P_0 que l'on déterminera.

Exercice 7: Dans \mathbb{R}^3 , on pose $x_1 = (-1, 1, 1), x_2 = (1, -1, 1)$ et $x_3 = (1, 1, -1)$.

Démontrer que (x_1, x_2, x_3) est une base de \mathbb{R}^3 .

Exercice 8 : Soit $n \in \mathbb{N}^*$. Pour tout $k \in [0, n]$, on pose $P_k = X^k(X - 1)^{n-k}$.

Montrer que (P_0, P_1, \dots, P_n) est une base de $\mathbb{R}_n[X]$.

II/ Dimension d'un espace vectoriel _____

Exercice 9 : Montrer que ((0;1;1);(1;0;1);(1;1;0)) est une base de \mathbb{R}^3 .

Exercice 10 : Déterminer une base et la dimension des espaces vectoriels suivant :

- 1. $E_1 = \{(x; y; z) \in \mathbb{R}^3 / -x + 3y + z = 0\}.$
- $2. \ \mathbf{E}_2 = \bigg\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R}) \, / \, a + d = 0 \bigg\}.$
- 3. $\mathcal{S}_n(\mathbb{R})$.

Exercice 11 : Dans \mathbb{R}^4 on considère l'ensemble E des vecteurs (x_1, x_2, x_3, x_4) vérifiant $x_1 + x_2 + x_3 + x_4 = 0$.

L'ensemble E est-il un sous-espace vectoriel de \mathbb{R}^4 ? Si oui, en donner une base.

Exercice 12 (Polynômes factoriels ou de Hilbert) : On considère les polynômes suivants :

$$P_0 = 1, P_1 = X, P_2 = \frac{X(X-1)}{2} \text{ et } P_3 = \frac{X(X-1)(X-2)}{6}.$$

- 1. Montrer que la famille (P_0, P_1, P_2, P_3) est une base de $\mathbb{K}_3[X]$.
- 2. Décomposer X³ dans cette base.
- 3. Soit $P \in \mathbb{K}_3[X]$. On pose :

$$\begin{split} &\alpha_0 = \mathrm{P}(0), \alpha_1 = \mathrm{P}(1) - \mathrm{P}(0), \alpha_2 = \mathrm{P}(2) - 2\mathrm{P}(1) + \mathrm{P}(0), \alpha_3 = \mathrm{P}(3) - 3\mathrm{P}(2) + 3\mathrm{P}(1) - \mathrm{P}(0) \\ &\text{et } \mathrm{Q} = \alpha_0 \mathrm{P}_0 + \alpha_1 \mathrm{P}_1 + \alpha_2 \mathrm{P}_2 + \alpha_3 \mathrm{P}_3. \end{split}$$

Calculer Q(k) pour $k \in [0;3]$. Que peut-on en déduire?

Dimension finie

Exercice 13 : Redémontrer le théorème de Taylor pour les polynômes.

III/ sous-espaces _

Exercice 14 : Calculer le rang de chaque famille de vecteurs de \mathbb{R}^n .

- 1. $x_1 = (1, 1, 1, 1), x_2 = (0, 1, 2, -1), x_3 = (1, 0, -2, 3), x_4 = (2, 1, 0, -1).$
- $2. \ \, x_1=(1,0,1,0), \, x_2=(2,1,0,1), \, x_3=(0,2,-1,1), \, x_4=(3,-1,2,0).$
- 3. $x_1 = (2,3,5), x_2 = (-1,2,-3), x_3 = (4,-3,8), x_4 = (-4,17,-10).$
- $4. \ \, x_1=(2,-3,4), \, x_2=(3,1,5), \, x_3=(-1,0,1), \, x_4=(0,2,4).$

Exercice 15: Dans \mathbb{R}^3 , discuter selon les valeurs du paramètre réel a la dimension de vect (u, v, w) avec u = (a, 1, 1), v = (1, a, 1) et w = (1, 1, a).

Exercice 16 : Dans \mathbb{R}^4 , on considère les vecteurs u = (0, 1, 2, 3), v = (1, 1, 1, 1), w = (1, 1, 1, -4), et l'ensemble $P = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z + t = 0\}.$

- 1. Vérifier que P est un sev de \mathbb{R}^4 . Quelle est sa dimension?
- 2. Montrer que P + vect $(u, v) = \mathbb{R}^4$, mais que P \cup vect $(u, v) \neq \mathbb{R}^4$.
- 3. Montrer que P et vect (u, v) ne sont pas supplémentaires dans \mathbb{R}^4 .
- 4. Montrer que la famille (u, v, w) est libre.

Exercice 17: On considère pour tout k dans \mathbb{N}^* les fonctions suivantes :

$$f_k: \theta \mapsto \cos(k\theta)$$
 et $g_k: \theta \mapsto (\cos(\theta))^k$.

On notera $f_0 = g_0$ la fonction constante égale à 1.

- 1. Montrer que pour tout $n \in \mathbb{N}$, la famille (g_0, g_1, \dots, g_n) est libre.
- 2. Montrer que pour tout $n \in \mathbb{N}$, la famille (f_0, f_1, \dots, f_n) est libre.
- 3. Utilisation des polynômes de Tchebychev

On admet qu'il existe une suite de polynômes $(T_n)_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}, T_n$ est de degré au plus n et :

$$\forall \theta \in \mathbb{R}, \quad T_n(\cos(\theta)) = \cos(n\theta).$$

Montrer que pour tout $n \in \mathbb{N}$, vect $(g_0, g_1, \dots, g_n) = \text{vect } (f_0, f_1, \dots, f_n)$.