Intégration

I/ Primitives

Exercice 1 : Déterminer les fonctions f continues sur $[0\,;1]$ vérifiant $\left|\int_0^1 f(t)\,\mathrm{d}t\right| = \int_0^1 |f(t)|\,\mathrm{d}t$.

Exercice 2 : Soit f continue sur [0;1] telle que $\int_0^1 f(t) dt = \frac{1}{2}$.

Montrer que f admet un point fixe.

Exercice 3 : Pour chacune des fonctions suivantes, calculer la valeur moyenne de f sur l'intervalle I donné.

1.
$$f: x \mapsto \frac{5}{3x^2} \text{ sur } I = [-4; -1].$$

4.
$$f: x \mapsto x(3x^2 - 1)^2 \text{ sur } I = [-1; 2].$$

5. $f: x \mapsto -3x e^{x^2 - 2} \text{ sur } I = [-1; 3].$

2.
$$f: x \mapsto \frac{3}{5\sqrt{x}} \text{ sur } I = [1;4].$$

6.
$$f: x \mapsto \frac{3x^3}{5\sqrt{x^4 + 2}} \text{ sur } I = [1; 4].$$

3.
$$f: x \mapsto 2e^x \text{ sur } I = \left[\frac{1}{2}; 1\right].$$

7.
$$f: x \mapsto \frac{x^2}{(8-x^3)^2} \text{ sur } I = [0;1].$$

Exercice 4 : Pour $x \in [0;1[$, on définit $f(x) = \int_x^{x^2} \frac{\mathrm{d}t}{\ln(t)}$.

 $1. \ \, {\rm En}$ utilisant la concavité du logarithme, démontrer que :

$$\forall\,x\in\left]0\,;1\right[,\,\forall\,t\in\left]x^2\,;1\right],\quad\frac{2\ln(x)}{x^2-1}(t-1)\leqslant\ln(t)\leqslant t-1.$$

- 2. En déduire que f se prolonge par continuité en 1.
- 3. Justifier que f est dérivable sur $[0\,;1],$ et calculer sa dérivée.
- 4. En déduire la valeur de $I = \int_0^1 \frac{(t-1)}{\ln(t)} dt$.

Exercice 5 : On considère la fonction F définie sur $J=]1\,;+\infty[$ par

$$F(x) = \int_{x}^{x^2} \frac{\mathrm{d}t}{(\ln(t))^2}.$$

ntégratio

- 1. Étudier le sens de variation de F sur J.
- 2. En utilisant la décroissance de la fonction $t \mapsto \frac{1}{(\ln(t))^2}$ sur $I =]1; +\infty[$, déterminer $\lim_{x \to +\infty} F(x)$.
- 3. En utilisant l'inégalité $0 < \ln(t) \leqslant t 1$ pour $t \in I$, déterminer $\lim_{x \to 1^+} F(x)$.

II/ Suites d'intégrales ____

Exercice 6 : On pose pour $n \in \mathbb{N}$ et $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, T_n(x) = \int_0^x \tan^n(t) dt$.

- 1. Calculer $T_0(x)$, $T_1(x)$, $T_2(x)$.
- 2. Trouver une relation de récurrence entre $\mathcal{T}_{n+2}(x)$ et $\mathcal{T}_n(x)$ $(n\in\mathbb{N}).$
- 3. En déduire $T_{2p}(x)$ et $T_{2p+1}(x)$ pour $p \in \mathbb{N}$.

Exercice 7 : On pose pour $n\in\mathbb{N}^*$ et $x\in\mathbb{R},$ $\mathbf{A}_n(x)=\int_0^x \frac{1}{(1+t^2)^n}\,\mathrm{d}t.$

- 1. Calculer $A_1(x)$.
- 2. Trouver une relation de récurrence entre $A_{n+1}(x)$ et $A_n(x)$.
- 3. En déduire $A_n(x)$ pour n = 2, 3, 4.

Exercice 8 (Intégrales de Wallis) : Soit $I_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$.

- 1. Établir une relation de récurrence entre \mathcal{I}_n et $\mathcal{I}_{n+2}.$
- 2. En déduire I_{2p} et I_{2p+1} .
- 3. Montrer que $(\mathbf{I}_n)_{n\in\mathbb{N}_{n_0}}$ est décroissante et strictement positive.
- 4. En déduire que $I_n \underset{n \to +\infty}{\sim} I_{n+1}$.
- 5. Calculer $nI_{n+1}I_n$.
- 6. Donner alors un équivalent simple de I_n .

Exercice 9 : Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 x^n \sin(\pi x) dx$.

- 1. Calculer I_0 .
- 2. Montrer que, $\forall n \in \mathbb{N}, 0 \leq I_n \leq \frac{1}{n+1}$.
- 3. En déduire $\lim_{n\to+\infty} I_n$.
- 4. Trouver une relation de récurrence entre I_{n-2} et I_n pour tout entier $n \ge 2$.
- 5. Démontrer que l'on a :

$$\forall \, p \geqslant 0, \, \, \mathbf{I}_{2p} = (-1)^p \frac{2(2p)!}{\pi^{2p+1}} + \sum_{k=0}^{p-1} (-1)^k \frac{2(2p)!}{\pi^{2k+1}(2p-2k)!}.$$

2

Exercice 10 (Lemme de Riemann-Lebesgue) :

1. On suppose que f est une fonction de classe \mathscr{C}^1 sur [a,b].

Montrer que $\lim_{\lambda \to +\infty} \int_a^b \sin(\lambda t) f(t) dt = 0.$

2. (***) Redémontrer le même résultat en supposant simplement que f est continue par morceaux sur [a,b] (commencer par le cas des fonctions en escaliers).

III/ Sommes de Riemann _____

Exercice 11 : Déterminer la limite des suites suivantes définies pour $n \in \mathbb{N}^*$ par :

1.
$$\sum_{k=0}^{n-1} \frac{k}{n^2}$$

$$3. \sum_{k=0}^{n-1} \frac{1}{k+n}$$

$$5. \sum_{k=0}^{n-1} \frac{k}{k^2 + n^2}$$

$$2. \sum_{k=1}^{n} \frac{n}{k^2 + n^2}$$

$$4. \sum_{k=0}^{n-1} \frac{\sin\left(\frac{k\pi}{n}\right)}{n}$$

$$6. \sum_{k=1}^{n} \frac{n+k}{n^2+k}$$

7.
$$\frac{1}{n} \sqrt[n]{(n+1)(n+2)\dots(2n)}$$

Exercice 12 : Pour $n \in \mathbb{N}^*$, déterminer $\lim_{n \to +\infty} \frac{1}{n\sqrt{n}} \sum_{k=1}^n \lfloor \sqrt{k} \rfloor$.

Exercice 13 : Pour tout $n \in \mathbb{N}^*$, on considère $u_n = \sum_{k=1}^{n-1} \frac{1}{\sqrt{n^2 - k^2}}$.

- 1. Expliquer pourquoi on ne peut utiliser le théorème sur les sommes de Riemann.
- 2. En utilisant les variations de f sur [0;1[, montrer que :

$$\forall \, k \in [\![1\,;n-1]\!]\,, \, \int_{\frac{k-1}{n}}^{\frac{k}{n}} \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x \leqslant \frac{1}{n} \frac{1}{\sqrt{1-(\frac{k}{n})^2}},$$

et

$$\forall \, k \in [\![0\,;n-2]\!]\,,\, \frac{1}{n} \frac{1}{\sqrt{1-(\frac{k}{n})^2}} \leqslant \int_{\frac{k}{n}}^{\frac{k+1}{n}} \frac{1}{\sqrt{1-x^2}} \,\mathrm{d}x.$$

3. En déduire un encadrement de u_n et conclure.

Exercice 14 : Calculer l'intégrale de $f:[a,b]\to\mathbb{R}$ comme limite de sommes de Riemann-Darboux dans les cas suivants :

1.
$$f(x) = \sin(x)$$
 et $f(x) = \cos(x)$ sur $\left[0; \frac{\pi}{2}\right]$ et $x_k = \frac{k\pi}{2n}, k = 0, 1, ..., n$,

Intégration

- 2. $g(x) = \frac{1}{x}$ sur $[a,b] \subset \mathbb{R}_+^*$ et $x_k = aq^k$, k=0,1,...,n (q étant à déterminer),
- 3. $h(x) = \alpha^x \text{ sur } [a, b] , \alpha > 0, \text{ et } x_k = a + (b a) \cdot \frac{k}{n}, k = 0, 1, ..., n.$

Exercice 15 (Intégrale de Poisson) : Pour $x \in \mathbb{R} \setminus \{-1, 1\}$, on pose

$$\mathrm{P}(x) = \int_0^\pi \ln \left(x^2 - 2x \cos(\theta) + 1 \right) d\theta.$$

- 1. Vérifier l'existence de P(x).
- 2. Pour $n \in \mathbb{N}^*$, factoriser $X^{2n} 1$ dans $\mathbb{R}[X]$. En déduire P(x).

Aide : On pourra utiliser les sommes de Riemann.

IV/ Théorèmes de Taylor

Exercice 16 : En appliquant une inégalité de Taylor à ln(1+x), montrer que

$$\ln(2) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k}.$$

Exercice 17 (Approximation de la dérivée seconde) : Soit $f:[a;b]\to\mathbb{C}$ de classe \mathscr{C}^4 .

Justifier l'existence de $\mathcal{M} = \sup_{x \in [a;b]} \left| f^{(4)}(x) \right|$ puis montrer que

$$\forall\,t+h,t-h\in\left[a\,;b\right],\,\left|f(t+h)+f(t-h)-2f(t)-h^2f^{\prime\prime}(t)\right|\leqslant\frac{\mathrm{M}}{12}h^4.$$