Dimension finie 2

Dimension finie 2

Commentaires : Je vous ai senti paniqués alors je vous ai vite tapé la correction. À peine relue donc peut-être pas exempte de fautes.

Exercice 1: Vrai ou faux ...

- 1. Dans \mathbb{K}^4 , ax+by+cz+dt=0 avec $(a,b,c,d)\neq (0,0,0,0)$ est une équation définissant un sous-espace vectoriel de dimension 3
- 2. $(\mathcal{M}_{n,n}(\mathbb{K}), +, .)$ est un \mathbb{K} -espace vectoriel de dimension np
- 3. $\mathrm{GL}_n(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$
- 4. La transposée de AB est A^TB^T
- 5. Pour toute matrice carrée A, $A^2 = 0 \Rightarrow A = 0$
- 6. Pour toutes matrices carrées d'ordre p, A et B et tout naturel n, $(AB)^n = A^n B^n$
- 7. Si $u, v \in \mathcal{L}(E)$, alors $u \circ v = 0$ si et seulement si $\operatorname{Im}(u) \subset \ker(v)$.
- 8. Toute famille génératrice d'un espace vectoriel de dimension finie a un cardinal supérieur ou égal à toute famille libre.
- 9. L'image d'une famille libre par une application linéaire injective est libre.
- 10. Dans $\mathcal{M}_n(\mathbb{K})$, l'ensemble des matrices symétriques et l'ensemble des matrices antisymétriques sont supplémentaires.

Correction:

- 1. V : C'est le noyau d'une forme linéaire non nulle. On verra que c'est un hyperplan de \mathbb{R}^4 donc de dimension 3.
- 2. V: confer cours.
- 3. $F: I_n I_n = 0_n$ n'est pas inversible.
- 4. F: confer cours.
- 5. $F: \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = 0_2.$
- 6. $F: \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right)^2 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^2 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$

et

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^2 \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}.$$

7. F: C'est l'inclusion réciproque qui est vraie.

Contre-exemple : Soit $\mathbf{E} = \mathrm{vect}\,(e_1,e_2)$ un espace de dimension 2. En particulier (e_1,e_2) est libre.

Alors, $u \circ v = 0_{\mathscr{L}(\mathbf{E})}$ par construction.

Cependant, $\operatorname{Im}(u) = \operatorname{vect}(e_1) \not\subset \ker(v) = \operatorname{vect}(e_2)$.

- 8. V: confer cours.
- 9. V : confer cours prochain ou démontrez-le.
- 10. V: confer cours.

Exercice 2: Dans \mathbb{R}^4 , montrer que l'ensemble des vecteurs u=(x,y,z,t) tels que

$$\left\{\begin{array}{l} x+3y-2z-5t=0\\ x+2y+z-t=0 \end{array}\right. \quad \text{est un sous-espace vectoriel}.$$

En donner la dimension et une base.

Correction : Notons P cet ensemble. Solution d'un système linéaire homogène, on sait que c'est un espace vectoriel, sous-espace de \mathbb{R}^4 .

Pour en trouver une base, on résout le système :

$$u\left(x, y, z, t\right) \in \mathcal{H} \iff \begin{cases} -5t + x + 3y - 2z = 0 \\ -t + x + 2y + z = 0 \end{cases}$$

$$\iff \begin{cases} -5t + x + 3y - 2z = 0 \\ -4t + y - 3z = 0 \end{cases}$$

$$\iff \begin{cases} 7t + x + 7z = 0 \\ -4t + y - 3z = 0 \end{cases}$$

$$\iff \begin{cases} x = -7t - 7z \\ y = 4t + 3z \\ z = z \\ t = t \end{cases}$$

$$\iff u \in \text{vect} \left(\begin{pmatrix} -7 \\ 4 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -7 \\ 3 \\ 1 \\ 0 \end{pmatrix}\right) = \text{vect} \left(\begin{pmatrix} -7 \\ 4 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \end{pmatrix}\right).$$

L'ensemble cherché est donc un sev de \mathbb{R}^4 de dimension 2. C'est un plan (mais pas un hyperplan).

Exercice 3 : On pose
$$A = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$, $D = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ et $E = \begin{pmatrix} -1 & -2 \\ 7 & 3 \end{pmatrix}$.

Ces matrices forment-elles une famille libre ou une famille liée?

Correction: Cinq matrices d'un ensemble de dimension 4? What's the joke?

Exercice 4 : Montrer que dans $\mathbb{K}[X]$, la famille constituée par un polynôme P de degré n, ainsi que ses polynômes dérivés P', P'', ..., P⁽ⁿ⁾ est libre.

Exercice 5 : Prouver l'indépendance des familles de fonctions suivantes :

- 1. $(f_{\alpha})_{\alpha \in \mathbb{R}}$ dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$ avec $f_{\alpha}(x) = e^{\alpha x}$
- 2. $(f_n)_{n\in\mathbb{N}}$ dans $\mathcal{F}(\mathbb{R},\mathbb{R})$ avec $f_n(x) = \cos(nx)$
- 3. $(f_n)_{n\in\mathbb{N}}$ dans $\mathcal{F}(\mathbb{R},\mathbb{R})$ avec $f_n(x)=\cos^n(x)$
- 4. $(f_{\alpha})_{\alpha \in \mathbb{R}}$ dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$ avec $f_{\alpha}(x) = |x \alpha|$

Correction : Toute la beauté de l'algèbre linéaire est que, même si la famille a l'air indexé sur \mathbb{R} , l'indépendance des familles ne repose que sur celle d'une famille finie (quelconque quand même).

1. Considérons $\sum_{i=1}^n \lambda_i f_{\alpha_i} = 0_{\mathcal{F}(\mathbb{R},\mathbb{R})}$, une combinaison linéaire finie nulle des f_{α} .

Égalité fonctionnelle qui signifie :

$$\forall x \in \mathbb{R}, \ \sum_{i=1}^{n} \lambda_i e^{\alpha_i x} = 0_{\mathbb{R}}.$$

Sans perdre de généralité, on peut supposer les α_i strictement ordonnés dans le sens croissant : $\alpha_1 < ... < \alpha_n$. Ils ne peuvent être égaux sans que la famille ne soit liée.

En divisant par $e^{\alpha_n x} \neq 0$, comme $\forall i \in [1; n-1]$, $e^{\alpha_i x} = o(e^{\alpha_n x})$ et par passage à la limite en $+\infty$, l'égalité étant conservée, on obtient $\lambda_n = 0$.

En itérant le raisonnement jusqu'à diviser par $e^{\alpha_1 x} \neq 0$, on obtient $\alpha_n = ... = \alpha_1 = 0$. La famille est libre.

- 2. Montrons par récurrence sur $n\in\mathbb{N}$, que la famille $\left(\cos(nx)\right)_{n\in\mathbb{N}}$ est libre.
 - \diamond Comme $f_0 \equiv 1$ n'est pas la fonction nulle, le résultat est clair pour n=0.
 - \diamond Soit $n \in \mathbb{N}$. Supposons la relation vraie pour un certain $n \in \mathbb{N}$ et considérons une combinaison linéaire nulle des f_i pour $i \in \llbracket 0 \, ; n+1 \rrbracket$:

Soient donc a_0, a_1, \dots, a_{n+1} des réels tels que :

$$a_0 f_0 + a_1 f_1 + \dots + a_n f_n + a_{n+1} f_{n+1} = 0.$$
 (XXIV.1)

Comme $f_k''=-k^2f_k$, en dérivant deux fois $(\mathrm{XXIV}.1)$, on obtient :

$$0^{2}a_{0}f_{0} - 1^{2}a_{1}f_{1} - \dots - n^{2}a_{n}f_{n} - (n+1)^{2}a_{n+1}f_{n+1} = 0.$$
 (XXIV.2)

En formant $(n+1)^2(XXIV.1)+(XXIV.2)$, on a :

$$((n+1)^2 - 0) a_0 f_0 + \dots + ((n+1)^2 - n^2) a_n f_n = 0.$$
 (XXIV.3)

D'après \mathcal{P}_n , la famille (f_0,f_1,\ldots,f_n) est libre, donc tous les coefficients de la combinaison linéaire (XXIV.3) sont nuls.

Pour tout $k \in \llbracket 0\,; n
rbracket \, , \, ((n+1)^2 - k^2)\, a_k = 0,$ donc $a_k = 0.$

La relation (XXIV.1) devient $a_{n+1}f_{n+1}=0$. Donc $a_{n+1}=0$, car f_{n+1} n'est pas la fonction nulle.

Donc pour tout $k\in [\![1,n+1]\!], a_k=0$ et la famille (f_0,f_1,\ldots,f_{n+1}) est libre.

La propriété est donc héréditaire. Initialisée pour n=0, elle est vraie pour tout $n\in\mathbb{N}$.

3. Soit $n \in \mathbb{N}$ et soient a_0, a_1, \dots, a_n des réels tels que

$$\forall\,x\in\mathbb{R},\quad \sum_{k=0}^n a_k\cos^k(x)=0_{\mathbb{R}}.$$

Le polynôme $P=\sum_{k=0}^n a_k X^k$ admet donc une infinité de racines *i.e.* tout le segment $[-1\,;1]$ s'il faut préciser. Il est donc nul, donc tous ses coefficients sont nuls.

D'où $a_k = 0$ pour tout $k \in \llbracket 0 \, ; n
rbracket$.

La famille $(\cos^n(x))_{n\in\mathbb{N}}$ est libre.

4. Considérons une combinaison linéaire (finie) nulle des f_{α} :

$$a_1f_{\alpha_1}+a_2f_{\alpha_2}+\cdots+a_nf_{\alpha_n}=0_{\mathcal{F}(\mathbb{R},\mathbb{R})}.$$

Si les a_i ne sont pas tous nuls, il en existe au moins un noté $a_k \neq 0$ sur lequel on peut pivoter et écrire :

$$a_k \left| x - \alpha_k \right| = - \sum_{\substack{i=1 \\ i \neq k}}^n \left| x - \alpha_i \right| \qquad \text{(\'egalit\'e de fonctions)}.$$

La fonction de droite, qui peut être nulle est dérivable, en α_k donc celle de gauche aussi ce qui ne se pourra que si $a_k=0$ et la contradiction.

Conséquence, tous les a_i sont nuls et la famille est libre.

Exercice 6 : Montrer que l'ensemble des fonctions $f_{a,\alpha}: x \longmapsto a\cos(x+\alpha)$ est un sous espace vectoriel de $\mathcal{F}(\mathbb{R};\mathbb{R})$.

En donner une base.

Correction : Montrons que $T = \{f_{a,\alpha} \mid a, \alpha \in \mathbb{R}\} = \text{vect}(\cos, \sin)$ ce qui nous donnera le résultat.

Pour tout $x \in \mathbb{R}$, $f_{a,\alpha}(x) = a\sin(\alpha) \times \cos(x) - a\cos(\alpha) \times \sin(x) \in \text{vect}(\cos(x),\sin(x))$ donc $T \subset \text{vect}(\cos,\sin)$.

Réciproquement, soit $f = a\cos + b\sin \in \text{vect}(\cos, \sin)$. La clé est la transformation de Fresnel :

$$\forall x \in \mathbb{R}.$$

$$a\cos(x) + b\sin(x) = a\,\frac{{\rm e}^{\hspace{1pt}\mathrm{i}\hspace{1pt} x} + {\rm e}^{-\hspace{1pt}\mathrm{i}\hspace{1pt} x}}{2} - \hspace{1pt}\mathrm{i}\hspace{1pt} b\,\frac{{\rm e}^{\hspace{1pt}\mathrm{i}\hspace{1pt} x} - {\rm e}^{-\hspace{1pt}\mathrm{i}\hspace{1pt} x}}{2} = \frac{a - \hspace{1pt}\mathrm{i}\hspace{1pt} b}{2} \hspace{1pt} {\rm e}^{\hspace{1pt}\mathrm{i}\hspace{1pt} x} + \frac{a + \hspace{1pt}\mathrm{i}\hspace{1pt} b}{2} \hspace{1pt} {\rm e}^{-\hspace{1pt}\mathrm{i}\hspace{1pt} x}.$$

Notons $z = \frac{a + ib}{2} \neq 0$ et $r e^{-i\alpha}$ sa forme polaire.

$$\begin{split} &= \overline{z} e^{ix} + z e^{-ix} = \overline{z} e^{ix} + \overline{\overline{z} e^{ix}} = 2 \operatorname{Re} \left(\overline{z} e^{ix} \right) \\ &= 2 \operatorname{Re} \left(r e^{i(x+\alpha)} \right) = \underbrace{2r}_{A} \cos \left(x + \alpha \right) \\ &= A \cos \left(x + \alpha \right) \in \mathbf{T}. \end{split}$$

Donc $vect(cos, sin) \subset T$ et l'égalité.

En particulier, T est un sev de dimension 2 de $\mathcal{F}(\mathbb{R};\mathbb{R})$ dont une base est la famille $(x \longmapsto \cos(x), x \longmapsto \sin(x))$.

Exercice 7 : Soit E un espace vectoriel de dimension finie n non nulle et f un endomorphisme nilpotent de E. Montrer que $f^n = 0$.

Correction : Soit p l'indice de nilpotence de f i.e. $f^p = 0$.

Si $p \leqslant n$ alors il est clair que $f^n = f^p \circ f^{n-p} = 0$.

Supposons le contraire i.e. $p \geqslant n+1$ tel que $f^{p-1} \neq 0$. Il existe donc un vecteur $v \in E$ tel que $f^{p-1}(v) \neq 0$. Montrons que la famille $(v, f(v), \dots, f^{p-1}(v))$ est libre dans E.

Comme E est de dimension n, il contiendra alors une famille libre de cardinal p>n ce qui est contradictoire.

Considérons donc une combinaison linéaire nulle des $f^i(v)$:

$$\lambda_0 v + \lambda_1 f(v) + \ldots + \lambda_{p-1} f^{p-1}(v) = 0.$$

En composant cette égalité pat f^{p-1} , on obtient :

$$\lambda_0 f^{p-1}(v) = 0 \implies \lambda_0 = 0 \text{ car } f^{p-1}(v) \neq 0.$$

En itérant ce raisonnement, $f^{p-1}(v) \neq 0$ entraı̂ne successivement $\lambda_1 = ... = \lambda_{p-1} = 0$. La famille est libre et le résultat escompté.

Exercice 8 : Soient E un \mathbb{C} -espace vectoriel et f un endomorphisme de E tel que $f \circ f = -\mathrm{I}d_{\mathrm{E}}$. Soient $\mathrm{V} = \{x \in \mathrm{E}, \ f(x) = ix\}$ et $\mathrm{W} = \{x \in \mathrm{E}, \ f(x) = -ix\}$.

Montrer que V et W sont deux sous-espaces vectoriels supplémentaires dans E.

Correction: $V = \ker (f - i Id_E)$ et $W = \ker (u + i Id_E)$ sont déjà des sev de E.

Comme, $\forall x \in E$, $ix = -ix \iff x = 0$, la somme directe l'est tout autant.

De plus, $\forall\,x\in\mathrm{E}$, on peut écrire $x=\frac{\mathrm{i}\,x+f(x)}{2\,\mathrm{i}}+\frac{\mathrm{i}\,x-f(x)}{2\,\mathrm{i}}.$

Or, par linéarité de f et $f^2 = -\mathrm{I} d_{\mathrm{E}}$, on a aussi :

$$f\left(\frac{\mathrm{i}\,x+f(x)}{2\,\mathrm{i}}\right)=\frac{\mathrm{i}\,f(x)-x}{2\,\mathrm{i}}=\,\mathrm{i}\,\,\frac{\mathrm{i}\,x+f(x)}{2\,\mathrm{i}}\implies\frac{\mathrm{i}\,x+f(x)}{2\,\mathrm{i}}\in\mathrm{V}.$$

Et

$$f\left(\frac{\mathrm{i}\,x-f(x)}{2\,\mathrm{i}}\right)=\frac{\mathrm{i}\,f(x)+x}{2\,\mathrm{i}}=-\,\mathrm{i}\,\,\frac{\mathrm{i}\,x-f(x)}{2\,\mathrm{i}}\implies\frac{\mathrm{i}\,x-f(x)}{2\,\mathrm{i}}\in\mathrm{W}.$$

Les espaces V et W sont donc aussi générateurs de E donc ils y sont supplémentaires :

$$E = V \oplus W$$
.

Exercice 9 : Soient E un \mathbb{K} -espace vectoriel, $u \in \mathscr{L}(E)$ et α et β deux éléments de \mathbb{K} distincts tels que $(u - \alpha \mathrm{I} d_{\mathrm{E}}) \circ (u - \beta \mathrm{I} d_{\mathrm{E}}) = 0$.

Montrer que $\mathbf{E} = \mathrm{Ker}(u - \alpha \mathbf{I} d_{\mathbf{E}}) \oplus \mathrm{Ker}(u - \beta \mathbf{I} d_{\mathbf{E}}).$

Correction : On sait déjà que $\ker (u - \alpha Id_E)$ et $\ker (u - \beta Id_E)$ sont des sev de E.

Soit $x \in \ker (u - \alpha \mathrm{I} d_{\mathrm{E}}) \cap \ker (u - \beta \mathrm{I} d_{\mathrm{E}})$. Par définition, $f(x) = \alpha x = \beta x$, ce qui n'est possible que si x = 0 car $\alpha \neq \beta$.

L'intersection des deux sev est donc réduite à $\{0\}$. La somme est directe.

Posons $P = \frac{X - \alpha}{\beta - \alpha}$ et $Q = \frac{X - \beta}{\alpha - \beta}$ deux polynômes de $\mathbb{K}[X]$. Alors,

$$P + Q = 1 \implies P(u) + Q(u) = Id_{F}$$
.

En particulier $\forall x \in E, x = P(u)(x) + Q(u)(x)$.

Reste à montrer que $P(u)(x) \in \ker (u - \beta Id_E)$ et $Q(u(x)) \in \ker (u - \alpha Id_E)$.

Or, en se rappelant que les polynômes d'endomorphismes P(u) et Q(u) commutent, on a :

$$\begin{cases} (u - \alpha \mathrm{I}d_{\mathrm{E}}) \left(\mathrm{Q}(u)(x) \right) = \frac{1}{\alpha - \beta} \left(u - \alpha \mathrm{I}d_{\mathrm{E}} \right) \circ (u - \beta \mathrm{I}d_{\mathrm{E}})(x) = 0 \implies \mathrm{Q}(u) \in \ker \left(u - \alpha \mathrm{I}d_{\mathrm{E}} \right) \\ (u - \beta \mathrm{I}d_{\mathrm{E}}) \left(\mathrm{P}(u)(x) \right) = \frac{1}{\beta - \alpha} \left(u - \alpha \mathrm{I}d_{\mathrm{E}} \right) \circ (u - \beta \mathrm{I}d_{\mathrm{E}})(x) = 0 \implies \mathrm{P}(u) \in \ker \left(u - \beta \mathrm{I}d_{\mathrm{E}} \right) \end{cases}$$

Les sev $\ker (u - \alpha Id_E)$ et $\ker (u - \beta Id_E)$ sont donc aussi générateurs de E:

$$E = \ker (u - \alpha Id_E) + \ker (u - \beta Id_E)$$
.

Avec la somme directe, on en déduit qu'ils y sont supplémentaires :

$$E = \ker (u - \alpha Id_E) \oplus \ker (u - \beta Id_E)$$
.

Commentaires: Vous remarquerez qu'il n'est nul besoin d'avoir E de dimension finie.

Exercice 10 : Soient f et g deux endomorphismes de E qui commutent.

Montrer que Ker(f) et Im(f) sont stables par g.

Correction:

- 1. Pour tout $x \in \ker(f)$, f(g(x)) = g(f(x)) = g(0) = 0 donc $g(x) \in \ker(f)$ qui est stable par g.
- 2. Soit $y \in \text{Im}(f)$ i.e. $\exists x \in E$ tel que y = f(x).

Alors, $g(y) = g(f(x)) = f(g(x)) \in \text{Im}(f)$ qui est aussi stable par g.

Exercice 11 (Ensemble des quaternions) : Soit \mathbb{H} l'ensemble des matrices carrées d'ordre 2 sur \mathbb{C} de la forme $M = \begin{pmatrix} x & y \\ -\overline{y} & \overline{x} \end{pmatrix}$, avec $x, y \in \mathbb{C}$.

- 1. Montrer que cet ensemble est un $\mathbb{R}\text{-espace}$ vectoriel de dimension 4, stable par produit de $\mathcal{M}_2(\mathbb{C}).$
- 2. Calculer $M\overline{M}^T$ et en déduire que tout élément non nul de $\mathbb H$ est inversible.
- 3. (\star) Identifier $\mathbb C$ à une partie de $\mathbb H$.

Correction:

1. D'après les lois de $\mathcal{M}_2(\mathbb{C})$ et la compatibilité du conjugué avec les combinaisons linéaires, il est assez facile de voir que \mathbb{H} est un \mathbb{R} espace vectoriel de $\mathcal{M}_2(\mathbb{C})$.

En effet, $\forall \lambda \in \mathbb{R}$ et $M, M' \in \mathbb{H}$, on a :

$$\lambda \mathbf{M} + \mathbf{M}' = \lambda \begin{pmatrix} x & y \\ -\overline{y} & \overline{x} \end{pmatrix} + \begin{pmatrix} x' & y' \\ -\overline{y'} & \overline{x'} \end{pmatrix} = \begin{pmatrix} \lambda x + x' & \lambda y + y' \\ -\left(\overline{\lambda y + y'}\right) & \overline{\lambda x + x'} \end{pmatrix} \in \mathbb{H}.$$

Soient $x=a+b\,\mathrm{i}\,$ et $y=c+d\,\mathrm{i}\,$ deux complexes avec $a,b,c,d\in\mathbb{R}.$ On a :

$$\mathbf{M} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & \mathbf{i} \\ -\mathbf{i} & 0 \end{pmatrix}.$$

$$\mathsf{Donc}\ \mathbb{H} = \mathrm{vect}_{\,\mathbb{R}} \left\{ \mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, K = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \right\}.$$

Commentaires : Vous remarquerez que $I^2=J^2=K^2=IJK=-\mathbb{1}$ d'où le nom de « quaternions ».

Montrons que ces matrices sont libres sur $\mathbb R$ en considérant une combinaison linéaire **réelle** nulle de celles-ci :

$$a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & \mathbf{i} \\ -\mathbf{i} & 0 \end{pmatrix} = 0_{\mathcal{M}_2(\mathbb{C})}$$

$$\iff \begin{pmatrix} a + b \mathbf{i} & c + d \mathbf{i} \\ -(c + d \mathbf{i}) & a + b \mathbf{i} \end{pmatrix} = 0_{\mathcal{M}_2(\mathbb{C})}$$

$$\iff \begin{cases} a + b \mathbf{i} = 0 \\ c + d \mathbf{i} = 0 \end{cases} \iff a = b = c = d = 0.$$

La famille est libre. Elle forme donc une base de \mathbb{H} qui est de dimension 4 (dans \mathbb{R}).

Enfin, soient $M, M' \in \mathbb{H}$.

$$\mathbf{M}\mathbf{M}' = \begin{pmatrix} x & y \\ -\overline{y} & \overline{x} \end{pmatrix} \begin{pmatrix} x' & y' \\ -\overline{y'} & \overline{x'} \end{pmatrix} = \begin{pmatrix} xx' - y\overline{y'} & xy' + \overline{x'}y \\ -\left(x'\overline{y} + \overline{xy'}\right) & -\overline{y}y' + \overline{xx'} \end{pmatrix} = \begin{pmatrix} z & t \\ -\overline{t} & \overline{z} \end{pmatrix} \in \mathbb{H},$$

en posant $z=xx'-y\overline{y'}\in\mathbb{C}$ et $t=xy'+\overline{x'}y\in\mathbb{C}.$

L'ensemble \mathbb{H} est donc stable par produit.

Commentaires : On dit que c'est un sous-anneau de $\mathcal{M}_2(\mathbb{C})$.

2. Soit
$$M = \begin{pmatrix} x & y \\ -\overline{y} & \overline{x} \end{pmatrix}$$
.

$$\mathbf{M}\overline{\mathbf{M}}^{\mathrm{T}} = \begin{pmatrix} x & y \\ -\overline{y} & \overline{x} \end{pmatrix} \begin{pmatrix} \overline{x} & -y \\ \overline{y} & x \end{pmatrix} = \begin{pmatrix} |x|^2 + |y|^2 & 0 \\ 0 & |x|^2 + |y|^2 \end{pmatrix} = \left(|x|^2 + |y|^2 \right) \mathbf{I}_2.$$

En remarquant que $M=0_{\mathbb{H}}$ si, et seulement si x=y=0 i.e. $|y|^2+|y|^2=0$, tout élément non nul de \mathbb{H} est inversible d'inverse

$$M^{-1} = \frac{1}{|x|^2 + |y|^2} \overline{M}^T.$$

3. L'application $\phi: \mathbb{C} \longrightarrow \mathbb{H}$ est clairement linéaire et injective donc \mathbb{C} est isomorphe à

$$z \longmapsto \begin{pmatrix} z & 0 \\ 0 & \overline{z} \end{pmatrix}$$

son image $\operatorname{Im}(\phi)$ qui est un sev de \mathbb{H} .