Dimension finie 2

Dimension finie 2

Exercice 1: Vrai ou faux ...

- 1. Dans \mathbb{K}^4 , ax + by + cz + dt = 0 avec $(a, b, c, d) \neq (0, 0, 0, 0)$ est une équation définissant un sous-espace vectoriel de dimension 3
- 2. $(\mathcal{M}_{n,p}(\mathbb{K}),+,.)$ est un \mathbb{K} -espace vectoriel de dimension np
- 3. $\mathrm{GL}_n(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$
- 4. La transposée de AB est A^TB^T
- 5. Pour toute matrice carrée A, $A^2 = 0 \Rightarrow A = 0$
- 6. Pour toutes matrices carrées d'ordre p, A et B et tout naturel $n, (AB)^n = A^n B^n$
- 7. Si $u, v \in \mathcal{L}(E)$, alors $u \circ v = 0$ si et seulement si $\operatorname{Im}(u) \subset \ker(v)$.
- 8. Toute famille génératrice d'un espace vectoriel de dimension finie a un cardinal supérieur ou égal à toute famille libre.
- 9. L'image d'une famille libre par une application linéaire injective est libre.
- 10. Dans $\mathcal{M}_n(\mathbb{K})$, l'ensemble des matrices symétriques et l'ensemble des matrices antisymétriques sont supplémentaires.

Exercice 2: Dans \mathbb{R}^4 , montrer que l'ensemble des vecteurs u=(x,y,z,t) tels que

$$\begin{cases} x + 3y - 2z - 5t = 0 \\ x + 2y + z - t = 0 \end{cases}$$
 est un sous-espace vectoriel.

En donner la dimension et une base.

Exercice 3: On pose
$$A = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$, $D = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ et $E = \begin{pmatrix} -1 & -2 \\ 7 & 3 \end{pmatrix}$.

Ces matrices forment-elles une famille libre ou une famille liée?

Exercice 4 : Montrer que dans $\mathbb{K}[X]$, la famille constituée par un polynôme P de degré n, ainsi que ses polynômes dérivés P', P'', ..., $P^{(n)}$ est libre.

Exercice 5 : Prouver l'indépendance des familles de fonctions suivantes :

- 1. $(f_{\alpha})_{\alpha \in \mathbb{R}}$ dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$ avec $f_{\alpha}(x) = e^{\alpha x}$
- 2. $(f_n)_{n\in\mathbb{N}}^{\operatorname{det}}$ dans $\mathcal{F}(\mathbb{R},\mathbb{R})$ avec $f_n(x)=\cos(nx)$
- 3. $\left(f_{n}\right)_{n\in\mathbb{N}}$ dans $\mathcal{F}(\mathbb{R},\mathbb{R})$ avec $f_{n}(x)=\cos^{n}(x)$
- 4. $(f_{\alpha})_{\alpha \in \mathbb{R}}$ dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$ avec $f_{\alpha}(x) = |x \alpha|$

Exercice 6 : Montrer que l'ensemble des fonctions $f_{a,\alpha}: x \longmapsto a\cos(x+\alpha)$ est un sous espace vectoriel de $\mathcal{F}(\mathbb{R};\mathbb{R})$.

En donner une base.

Exercice 7 : Soit E un espace vectoriel de dimension finie n non nulle et f un endomorphisme nilpotent de E. Montrer que $f^n = 0$.

Exercice 8 : Soient E un \mathbb{C} -espace vectoriel et f un endomorphisme de E tel que $f \circ f = -\mathrm{I}d_{\mathbb{E}}$. Soient $V = \{x \in \mathbb{E}, f(x) = ix\}$ et $W = \{x \in \mathbb{E}, f(x) = -ix\}$.

Montrer que V et W sont deux sous-espaces vectoriels supplémentaires dans E.

Exercice 9 : Soient E un K-espace vectoriel, $u \in \mathcal{L}(E)$ et α et β deux éléments de K distincts tels que $(u - \alpha Id_E) \circ (u - \beta Id_E) = 0$.

Montrer que $\mathbf{E} = \mathrm{Ker}(u - \alpha \mathbf{I} d_{\mathbf{E}}) \oplus \mathrm{Ker}(u - \beta \mathbf{I} d_{\mathbf{E}}).$

Exercice 10 : Soient f et g deux endomorphismes de E qui commutent.

Montrer que Ker(f) et Im(f) sont stables par g.

Exercice 11 (Ensemble des quaternions) : Soit $\mathbb H$ l'ensemble des matrices carrées d'ordre 2 sur $\mathbb C$ de la forme $\mathbb M = \begin{pmatrix} x & y \\ -\overline{y} & \overline{x} \end{pmatrix}$, avec $x,y \in \mathbb C$.

- 1. Montrer que cet ensemble est un \mathbb{R} -espace vectoriel de dimension 4, stable par produit de $\mathcal{M}_2(\mathbb{C}).$
- 2. Calculer $M\overline{M}^T$ et en déduire que tout élément non nul de $\mathbb H$ est inversible.
- 3. (\star) Identifier \mathbb{C} à une partie de \mathbb{H} .

Commentaires: J'ai enlevé le dernier car on est encore trop petit pour le faire correctement.