Dimension finie

Nom:	Prénom:
Exercice 1 : Vrai ou faux	
 (M_{n,p}(K),+,.) est un K-espace vectoriel de 2. GL_n(K) est un sous-espace vectoriel de M_n 3. Pour toute matrice carrée A, A² = 0 ⇒ A = 4. Si u, v ∈ ℒ(E), alors u ∘ v = 0 si et seulements. Dans M_n(K), l'ensemble des matrices syméres sont supplémentaires. 	(K) : 0

Exercice 2 : Soit E un espace vectoriel de dimension finie n non nulle et f un endomorphisme nilpotent de E. Montrer que $f^n = 0$.	
Exercice 3 : Soient f et g deux endomorphismes de E qui commutent.	
Montrer que $Ker(f)$ et $Im(f)$ sont stables par g .	

2