Dimension finie

Exercice 1: Vrai ou faux ...

- 1. $(\mathcal{M}_{n,n}(\mathbb{K}), +, .)$ est un \mathbb{K} -espace vectoriel de dimension np
- 2. $\mathrm{GL}_n(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$
- 3. Pour toute matrice carrée A, $A^2 = 0 \Rightarrow A = 0$
- 4. Si $u, v \in \mathcal{L}(E)$, alors $u \circ v = 0$ si et seulement si $\operatorname{Im}(u) \subset \ker(v)$.
- 5. Dans $\mathcal{M}_n(\mathbb{K})$, l'ensemble des matrices symétriques et l'ensemble des matrices antisymétriques sont supplémentaires.
- 1. V: $(\mathcal{M}_{n,p}(\mathbb{K}), +, .) = \text{vect}(\mathbb{E}_{i,j}, 1 \leq i, j \leq n).$
- 2. $F: I_n I_n = 0_n$ n'est pas inversible.
- 3. F: $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = 0_2$.
- 4. F: C'est l'inclusion réciproque qui est vraie.

Contre-exemple : Soit $E = \text{vect}(e_1, e_2)$ un espace de dimension 2. En particulier (e_1, e_2) est libre.

Alors, $u \circ v = 0_{\mathscr{L}(\mathbf{E})}$ par construction.

Cependant,
$$\operatorname{Im}(u) = \operatorname{vect}(e_1) \not\subset \ker(v) = \operatorname{vect}(e_2)$$
.

$$5. \ \ \mathbf{V}: \forall \ \mathbf{M} \in \mathcal{M}_n(\mathbb{K}), \ \mathbf{M} = \frac{1}{2} \cdot \left(\mathbf{M} + \mathbf{M}^\top\right) + \frac{1}{2} \cdot \left(\mathbf{M} - \mathbf{M}^\top\right) \ \text{et} \ \mathcal{S}_n(\mathbb{K}) \cap \mathcal{A}_n(\mathbb{K}) = \left\{\mathbf{0}_{\mathcal{M}_n(\mathbb{K})}\right\}.$$

Exercice 2 : Soit E un espace vectoriel de dimension finie n non nulle et f un endomorphisme nilpotent de E. Montrer que $f^n = 0$.

Soit p l'indice de nilpotence de f i.e. $f^p = 0$.

Si $p \leqslant n$ alors il est clair que $f^n = f^p \circ f^{n-p} = 0$.

Supposons le contraire i.e. $p \ge n+1$ tel que $f^{p-1} \ne 0$. Il existe donc un vecteur $v \in E$ tel que $f^{p-1}(v) \ne 0$. Montrons que la famille $(v, f(v), \dots, f^{p-1}(v))$ est libre dans E.

Comme E est de dimension n, il contiendra alors une famille libre de cardinal p > n ce qui est contradictoire.

Considérons donc une combinaison linéaire nulle des $f^i(v)$:

$$\lambda_0 v + \lambda_1 f(v) + \ldots + \lambda_{p-1} f^{p-1}(v) = 0.$$

En composant cette égalité par f^{p-1} , on obtient :

$$\lambda_0 f^{p-1}(v) = 0 \implies \lambda_0 = 0 \text{ car } f^{p-1}(v) \neq 0.$$

En itérant ce raisonnement, $f^{p-1}(v) \neq 0$ entraı̂ne successivement $\lambda_1 = \dots = \lambda_{p-1} = 0$. La famille est libre et le résultat escompté.

Exercice 3 : Soient f et g deux endomorphismes de E qui commutent.

Montrer que Ker(f) et Im(f) sont stables par g.

- 1. Pour tout $x \in \ker(f)$, f(g(x)) = g(f(x)) = g(0) = 0 donc $g(x) \in \ker(f)$ qui est stable par g.
- 2. Soit $y \in \text{Im}(f)$ i.e. $\exists x \in E$ tel que y = f(x).

Alors, $g(y) = g(f(x)) = f(g(x)) \in \text{Im}\,(f)$ qui est aussi stable par g.

Lycée Jules Garnier F. PUCCI