Applications linéaires

Cours de PTSI

Lycée Jules Garnier

Chapitre 27

Sommaire I

- 1 Isomorphismes en dimension finie
- 2 Définition d'une application linéaire
- 3 Rang d'une application linéaire
- Formes linéaires et hyperplans
- **5** Endomorphismes remarquables : projecteurs et symétries

our comparer des structures mathématiques du même type, on considère les applications d'un ensemble dans un autre qui préservent les opérations définies sur ces ensembles :

- Lorsque l'on étudie des ensembles, on s'intéresse aux applications bijectives, qui préservent le « nombre d'éléments » de l'ensemble.
- En analyse, on étudie les fonctions continues, qui préservent l'opération de limite
- En algèbre linéaire, on s'intéresse aux applications qui préservent la structure d'espace vectoriel, c'est-à-dire, les applications d'un espace vectoriel dans un autre qui préservent l'addition et la multiplication par un scalaire : les applications linéaires.

es applications linéaires sont donc des applications « naturelles »
dans les espaces vectoriels, qui apparaissent dans tous les domaines
des mathématiques, et pour lesquels une étude tout à fait générale
et théorique est possible, ce qui permet d'appréhender un peu mieux la
puissance de l'algèbre linéaire pour résoudre des problèmes de maths très divers.

PTSI (F. PUCCI) Chapitre 27 3/90

our comparer des structures mathématiques du même type, on considère les applications d'un ensemble dans un autre qui préservent les opérations définies sur ces ensembles :

- Lorsque l'on étudie des ensembles, on s'intéresse aux applications bijectives, qui préservent le « nombre d'éléments » de l'ensemble.
- En analyse, on étudie les fonctions continues, qui préservent l'opération de limite
- En algèbre linéaire, on s'intéresse aux applications qui préservent la structure d'espace vectoriel, c'est-à-dire, les applications d'un espace vectoriel dans un autre qui préservent l'addition et la multiplication par un scalaire : les applications linéaires.

es applications linéaires sont donc des applications « naturelles » dans les espaces vectoriels, qui apparaissent dans tous les domaines des mathématiques, et pour lesquels une étude tout à fait générale et théorique est possible, ce qui permet d'appréhender un peu mieux la puissance de l'algèbre linéaire pour résoudre des problèmes de maths très divers.

Dans ce chapitre, lorsqu'on omettra de le dire et sauf mention contraire, on considérera que E est un K-espace vectoriel avec K réduit à \mathbb{R} ou \mathbb{C} .

PTSI (F. PUCCI) Chapitre 27 3/90

- 1 Isomorphismes en dimension finie
 - Groupe linéaire
 - Isomorphismes et bases
 - Espaces isomorphes
- Définition d'une application linéaire
- 3 Rang d'une application linéaire
- 4 Formes linéaires et hyperplans
- 5 Endomorphismes remarquables : projecteurs et symétries

Rappel:

Dans le contexte général une application $f: X \longmapsto Y$ est bijective si, et seulement si il existe $g: Y \longmapsto X$ une application telle que :

$$g\circ f=\mathrm{I} d_{\mathrm{X}}\quad \text{ et }\quad f\circ g=\mathrm{I} d_{\mathrm{Y}}.$$

Dans ce cas g est unique, noté f^{-1} et appelé inverse de f.

De plus, $f^{-1}: Y \longrightarrow X$ est bijective d'inverse f.

Rappel:

Dans le contexte général une application $f: X \longmapsto Y$ est bijective si, et seulement si il existe $g: Y \longmapsto X$ une application telle que :

$$g\circ f=\mathrm{I} d_{\mathrm{X}}\quad \text{ et }\quad f\circ g=\mathrm{I} d_{\mathrm{Y}}.$$

Dans ce cas g est unique, noté f^{-1} et appelé inverse de f.

De plus, $f^{-1}: Y \longrightarrow X$ est bijective d'inverse f.

En particulier, on se rappellera, notamment pour la démonstration de la proposition (4), que :

 \blacksquare Une fonction f qui admet un inverse à gauche i.e. $g\circ f=\mathrm{Id}_{\mathbf{X}},$ est injective.

PTSI (F. PUCCI) Chapitre 27

Rappel:

Dans le contexte général une application $f: X \longmapsto Y$ est bijective si, et seulement si il existe $g: Y \longmapsto X$ une application telle que :

$$g \circ f = \mathrm{I}d_{\mathrm{X}}$$
 et $f \circ g = \mathrm{I}d_{\mathrm{Y}}$.

Dans ce cas g est unique, noté f^{-1} et appelé inverse de f.

De plus, $f^{-1}: Y \longrightarrow X$ est bijective d'inverse f.

En particulier, on se rappellera, notamment pour la démonstration de la proposition (4), que :

- \blacksquare Une fonction f qui admet un inverse à gauche i.e. $g\circ f=\mathrm{I} d_{\mathrm{X}},$ est injective.
- Une fonction f qui admet un inverse à droite i.e. $f \circ g = \mathrm{Id}_{Y}$, est surjective.

Rappel:

Dans le contexte général une application $f: X \longmapsto Y$ est bijective si, et seulement si il existe $g: Y \longmapsto X$ une application telle que :

$$g \circ f = \mathrm{I}d_{\mathrm{X}}$$
 et $f \circ g = \mathrm{I}d_{\mathrm{Y}}$.

Dans ce cas g est unique, noté f^{-1} et appelé inverse de f.

De plus, $f^{-1}: Y \longrightarrow X$ est bijective d'inverse f.

En particulier, on se rappellera, notamment pour la démonstration de la proposition (4), que :

- \blacksquare Une fonction f qui admet un inverse à gauche i.e. $g\circ f=\mathrm{I} d_{\mathrm{X}},$ est injective.
- Une fonction f qui admet un inverse à droite i.e. $f \circ g = \mathrm{Id}_{Y}$, est surjective.

Rappel:

Dans le contexte général une application $f: X \longmapsto Y$ est bijective si, et seulement si il existe $g: Y \longmapsto X$ une application telle que :

$$g \circ f = \mathrm{I}d_{\mathrm{X}}$$
 et $f \circ g = \mathrm{I}d_{\mathrm{Y}}$.

Dans ce cas g est unique, noté f^{-1} et appelé inverse de f.

De plus, $f^{-1}: Y \longrightarrow X$ est bijective d'inverse f.

En particulier, on se rappellera, notamment pour la démonstration de la proposition (4) , que :

- Une fonction f qui admet un inverse à gauche i.e. $g \circ f = \mathrm{Id}_{\mathrm{X}}$, est injective.
- \blacksquare Une fonction f qui admet un inverse à droite i.e. $f \circ g = \mathrm{Id}_{\mathrm{Y}},$ est surjective.

Dis autrement dans un langage de groupe, f est bijective si, et seulement si est inversible dans $(\mathcal{F}(X;Y),\circ)$.

1. Groupe linéaire

Rappel:

Soient E et F deux espaces vectoriels sur \mathbb{K} .

• f est un isomorphisme si, et seulement si f un homomorphisme (d'espaces vectoriels) bijectif. On note $\mathcal{I}som\left(\mathbf{E}\,;\mathbf{F}\right)$ leur ensemble.

1. Groupe linéaire

Rappel:

Soient E et F deux espaces vectoriels sur \mathbb{K} .

- f est un isomorphisme si, et seulement si f un homomorphisme (d'espaces vectoriels) bijectif. On note $\mathcal{I}som\left(\mathbf{E}\,;\mathbf{F}\right)$ leur ensemble.
- f est un automorphisme de E si, et seulement si f est un endomorphisme bijectif. Leur ensemble est noté $\mathcal{G}l(E)$.

1. Groupe linéaire

Rappel:

Soient E et F deux espaces vectoriels sur K.

- f est un isomorphisme si, et seulement si f un homomorphisme (d'espaces vectoriels) bijectif. On note $\mathcal{I}som\left(\mathbf{E}\,;\mathbf{F}\right)$ leur ensemble.
- f est un automorphisme de E si, et seulement si f est un endomorphisme bijectif. Leur ensemble est noté $\mathcal{G}l(E)$.

Proposition

Soient E et F deux espaces vectoriels sur \mathbb{K} .

$$f \in \mathcal{I}som(E; F) \iff f^{-1} \in \mathcal{I}som(F; E)$$
.

1. Groupe linéaire

Rappel:

Soient E et F deux espaces vectoriels sur K.

- f est un isomorphisme si, et seulement si f un homomorphisme (d'espaces vectoriels) bijectif. On note $\mathcal{I}som\left(\mathbf{E}\,;\mathbf{F}\right)$ leur ensemble.
- f est un automorphisme de E si, et seulement si f est un endomorphisme bijectif. Leur ensemble est noté $\mathcal{G}l(E)$.

Proposition

Soient E et F deux espaces vectoriels sur \mathbb{K} .

$$f \in \mathcal{I}som(E; F) \iff f^{-1} \in \mathcal{I}som(F; E)$$
.

Vocabulaire: Deux espaces vectoriels sont dit isomorphes s'il existe un isomorphisme entre eux.

1. Groupe linéaire

Exemples 1:

■ \mathbb{K}^n et $\mathcal{M}_{n,1}(\mathbb{K})$ sont isomorphes avec pour isomorphisme :

$$(x_1,\dots,x_n) \longmapsto \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right).$$

C'est cet isomorphisme qui permet d'identifier \mathbb{K}^n et $\mathcal{M}_{n,1}(\mathbb{K}),$ de façon légèrement abusive, mais transparente.

1. Groupe linéaire

Exemples 1:

 \blacksquare \mathbb{K}^n et $\mathcal{M}_{n,1}(\mathbb{K})$ sont isomorphes avec pour isomorphisme :

$$(x_1,\dots,x_n) \longmapsto \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right).$$

C'est cet isomorphisme qui permet d'identifier \mathbb{K}^n et $\mathcal{M}_{n,1}(\mathbb{K}),$ de façon légèrement abusive, mais transparente.

$$\bullet \ \varphi: \left\{ \begin{array}{c} \text{Suites g\'eom\'etriques} \\ \text{de raison } q \neq 0 \end{array} \right\} \quad \longrightarrow \quad \mathbb{R} \quad \text{est un isomorphisme.}$$

$$(u_n)_{n \in \mathbb{N}} \qquad \longmapsto \quad u_0$$

1. Groupe linéaire

Corollaire 1:

Soient E et F deux espaces vectoriels sur \mathbb{K} .

4 La réciproque d'un isomorphisme est un isomorphisme.

1. Groupe linéaire

Corollaire 1:

Soient E et F deux espaces vectoriels sur \mathbb{K} .

- 1 La réciproque d'un isomorphisme est un isomorphisme.
- ❷ La composée de deux isomorphismes est un isomorphisme : $\forall f \in \mathcal{I}som\left(\mathbf{E};\mathbf{F}\right),\ g \in \mathcal{I}som\left(\mathbf{F};\mathbf{G}\right),$

$$f \circ g \in \mathcal{I}som(\mathbf{E}; \mathbf{G})$$
 et $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

1. Groupe linéaire

Exemple 2 (Isomorphisme en analyse):

Soient $(a;b;c) \in \mathbb{R}^3$ avec $a \neq 0$.

Considérons l'ensemble $\mathcal S$ des fonctions $y:\mathbb R\longmapsto\mathbb K$ de classe $\mathcal C^2$ telles que :

$$ay'' + by' + cy = 0.$$

Alors:

1. Groupe linéaire

Exemple 2 (Isomorphisme en analyse):

Soient $(a; b; c) \in \mathbb{R}^3$ avec $a \neq 0$.

Considérons l'ensemble $\mathcal S$ des fonctions $y:\mathbb R \longmapsto \mathbb K$ de classe $\mathcal C^2$ telles que :

$$ay'' + by' + cy = 0.$$

Alors:

- \mathfrak{S} est un sous espace vectoriel de $\mathcal{C}^2(\mathbb{R};\mathbb{K})$.
- $\ \, \Theta$ Pour tout réel $t_0,$ l'application $\mathbf T_0:\ \mathcal S \ \longrightarrow \ \mathbb K^2$ est un isomorphisme $y \ \longmapsto \ (y(t_0)\,;y'(t_0))$

de $\mathcal S$ dans $\mathbb K^2$ puisqu'elle est linéaire et bijective d'après le théorème de Cauchy-Lipschitz.

1. Groupe linéaire

Exercice 1:

Montrer que l'application $S: f \longmapsto (f', f(0))$ est un isomorphisme de $\mathcal{C}^1(\mathbb{R}; \mathbb{R})$ sur $\mathcal{C}^0(\mathbb{R}; \mathbb{R}) \times \mathbb{R}$.

1. Groupe linéaire

Exercice 1:

Montrer que l'application $S: f \longmapsto (f', f(0))$ est un isomorphisme de $\mathcal{C}^1(\mathbb{R}; \mathbb{R})$ sur $\mathcal{C}^0(\mathbb{R}; \mathbb{R}) \times \mathbb{R}$.

Cet isomorphisme est un peu surprenant car $\mathcal{C}^1(\mathbb{R},\mathbb{R})$ est à la fois beaucoup plus petit que $\mathcal{C}^0(\mathbb{R},\mathbb{R})$ et isomorphe à $\mathcal{C}^0(\mathbb{R},\mathbb{R})\times\mathbb{R}$, donc plus gros que $\mathcal{C}^0(\mathbb{R},\mathbb{R})$!

PTSI (F. PUCCI) Chapitre 27

1. Groupe linéaire

Définition/Théorème I (Groupe linéaire):

Soit E un K-ev.

L'ensemble des automorphismes de E muni de la composition est un groupe, appelé groupe linéaire de E et noté $\mathcal{G}l(E)$.

1. Groupe linéaire

Définition/Théorème I (Groupe linéaire):

Soit E un \mathbb{K} -ev.

L'ensemble des automorphismes de E muni de la composition est un groupe, appelé groupe linéaire de E et noté $\mathcal{G}l(E)$.

Exemples 3:

■ $(x;y) \mapsto (x+y;x-y)$ est un automorphisme de \mathbb{R}^2 .

1. Groupe linéaire

Définition/Théorème I (Groupe linéaire):

Soit E un K-ev.

L'ensemble des automorphismes de E muni de la composition est un groupe, appelé groupe linéaire de E et noté $\mathcal{G}l(E)$.

Exemples 3:

- $\blacksquare (x;y) \longmapsto (x+y;x-y)$ est un automorphisme de \mathbb{R}^2 .
- Les homothéties non nulles $\lambda.\mathrm{I}d_\mathrm{E}$ avec $\lambda \neq 0$ sont des automorphismes de E avec $\left(\lambda.\mathrm{I}d_\mathrm{E}\right)^{-1} = \lambda^{-1}.\mathrm{I}d_\mathrm{E}.$

1. Groupe linéaire

Définition/Théorème I (Groupe linéaire):

Soit E un K-ev.

L'ensemble des automorphismes de E muni de la composition est un groupe, appelé groupe linéaire de E et noté $\mathcal{G}l(E)$.

Exemples 3:

- \blacksquare $(x;y) \mapsto (x+y;x-y)$ est un automorphisme de \mathbb{R}^2 .
- Les homothéties non nulles $\lambda.\mathrm{I}d_\mathrm{E}$ avec $\lambda \neq 0$ sont des automorphismes de E avec $\left(\lambda.\mathrm{I}d_\mathrm{E}\right)^{-1} = \lambda^{-1}.\mathrm{I}d_\mathrm{E}.$
- \blacksquare Les symétries $s\in\mathcal{L}(\to)$ i.e. $s^2=\mathrm{I}d_{\to}$ sont des automorphismes de \to tels que $s^{-1}=s.$

PTSI (F. PUCCI) Cha

1. Groupe linéaire

L'ensemble $\Big(\mathcal{L}(E), +, \circ\Big)$ est ce qu'on appelle un anneau non commutatif. L'addition joue son rôle usuel et la composition joue à peu de choses près le rôle de la multiplication dans les ensembles de nombres usuels (\mathbb{R} ou \mathbb{C} par exemple).

En effet, la composition admet un élément neutre qui est l'application identité et elle est distributive par rapport à l'addition, tout comme le produit dans les ensembles de nombres mais toutes les applications linéaires ne sont pas inversibles (seuls les automorphismes le sont).

En ce sens, $\mathcal{G}l(E)$ peut également être vu comme l'ensemble des éléments inversibles de $\mathcal{L}(E)$.

En fait, nous verrons plus loin que la composition d'applications linéaires s'identifie effectivement à un produit, celui des matrices. Pour l'instant, nous utilisons déjà cette analogie pour justifier l'énorme abus de notation suivant : pour une application linéaire, on notera $f \circ f = f^2$ (un carré au sens « produit » n'aurait en général aucun sens), et plus généralement f^n la composée de f n fois par elle-même.

PTSI (F. PUCCI) Chapitre 27 12/90

1. Groupe linéaire

Exercice 2:

Montrer que l'application suivante est un automorphisme et expliciter son automorphisme réciproque.

$$\begin{array}{cccc} v: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ & & & \\ (x\,;y\,;z) & \longmapsto & \begin{pmatrix} x+4z \\ x+y-z \\ 2y+z \end{pmatrix} \end{array}$$

2. Isomorphismes et bases

Analysons maintenant le lien entre les propriétés d'une application linéaire et celles de familles particulières des espaces vectoriels concernés. Que se passe-t-il durant le transport?

Tout d'abord un petit lemme utile en pratique :

Lemme I (Lemme de transport):

Soient E et F deux K-ev et $f \in \mathcal{L}(E, F)$. On suppose E de dimension finie.

L'image de toute famille génératrice de E est génératrice de Im(f).

2. Isomorphismes et bases

Analysons maintenant le lien entre les propriétés d'une application linéaire et celles de familles particulières des espaces vectoriels concernés. Que se passe-t-il durant le transport?

Tout d'abord un petit lemme utile en pratique :

Lemme I (Lemme de transport):

Soient E et F deux K-ev et $f \in \mathcal{L}(E,F)$. On suppose E de dimension finie.

L'image de toute famille génératrice de E est génératrice de Im(f).

Exercice 3:

Déterminer une base de $\mathrm{Im}\,(f)$ avec

$$f: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^3$$

$$(x\,;y\,;z) \quad \longmapsto \quad \begin{pmatrix} x+y+2z \\ x+z \\ -x-z \end{pmatrix}.$$

PTSI (F. PUCCI) Chapitre 27 14/90

2. Isomorphismes et bases

Théorème 2:

Soient E et F deux K-ev et $f \in \mathcal{L}(\mathcal{E},\mathcal{F}).$ On suppose E de dimension finie.

 $\ \, \bullet \ \, f$ est injective \iff l'image par f d'une base de E est une famille libre.

2. Isomorphismes et bases

Théorème 2:

Soient E et F deux K-ev et $f \in \mathcal{L}(E, F)$. On suppose E de dimension finie.

- lacktriangle f est injective \iff l'image par f d'une base de E est une famille libre.
- ${\bf 2} \ f$ est surjective \iff l'image par f d'une base de E est une famille génératrice.

2. Isomorphismes et bases

Théorème 2:

Soient E et F deux K-ev et $f \in \mathcal{L}(E, F)$. On suppose E de dimension finie.

- lacktriangle f est injective \iff l'image par f d'une base de E est une famille libre.
- \bullet f est surjective \iff l'image par f d'une base de E est une famille génératrice.
- $\ \, \textbf{0} \,\, f$ est bijective \iff l'image par f d'une base de E est une base de F.

PTSI (F. PUCCI) Chapitre 27

2. Isomorphismes et bases

Théorème 2:

Soient E et F deux K-ev et $f \in \mathcal{L}(E, F)$. On suppose E de dimension finie.

- \bullet f est injective \iff l'image par f d'une base de E est une famille libre.
- $\bullet f$ est surjective \iff l'image par f d'une base de E est une famille génératrice.
- \bullet f est bijective \iff l'image par f d'une base de E est une base de F.

Exemple 4 (Important):

Soient E un \mathbb{K} -ev de dimension finie et (e_1,\ldots,e_n) une base de E.

Comme $f: E \mapsto \operatorname{Im}(f)$ est surjective, on déduit de la propriété précédente que $(f(e_1), \dots, f(e_n))$ est une famille génératrice de $\operatorname{Im}(f)$.

Ainsi, on retrouve:

$$\operatorname{Im}(f) = \operatorname{vect}(f(e_1), \dots, f(e_n)).$$

PTSI (F. PUCCI) Chapitre 27

2. Isomorphismes et bases

Exercice 4:

Montrer que les applications suivantes sont linéaires puis déterminer une base de leur noyau et une base de leur image. Sont-elles injectives ? surjectives ?

2. Isomorphismes et bases

Exercice 4:

Montrer que les applications suivantes sont linéaires puis déterminer une base de leur noyau et une base de leur image. Sont-elles injectives? surjectives?

- $\ \ \, \mathbf{P} \longmapsto \mathbf{P} \mathbf{X}\mathbf{P}' \mathbf{P}(\mathbf{0})$ de $\mathbb{R}[\mathbf{X}]$ dans lui-même.

2. Isomorphismes et bases

Corollaire 2:

Si deux \mathbb{K} -ev de dimension finie E et F sont isomorphes, alors ils ont la même dimension.

2. Isomorphismes et bases

Corollaire 2:

Si deux \mathbb{K} -ev de dimension finie E et F sont isomorphes, alors ils ont la même dimension.

On verra plus loin (confer corollaire (3)) que la réciproque est vraie.

2. Isomorphismes et bases

Corollaire 2:

Si deux \mathbb{K} -ev de dimension finie E et F sont isomorphes, alors ils ont la même dimension.

On verra plus loin (confer corollaire (3)) que la réciproque est vraie.

Théorème 3:

Soient E et F deux K-ev de **même** dimension finie et $f \in \mathcal{L}(E,F)$. Alors :

 $(i) \ f \ \text{est surjective} \quad \Longleftrightarrow \quad (ii) \ f \ \text{est injective} \quad \Longleftrightarrow \quad (iii) \ f \ \text{est bijective}.$

PTSI (F. PUCCI)

2. Isomorphismes et bases

Corollaire 2:

Si deux \mathbb{K} -ev de dimension finie E et F sont isomorphes, alors ils ont la même dimension.

On verra plus loin (confer corollaire (3)) que la réciproque est vraie.

Théorème 3:

Soient E et F deux K-ev de **même** dimension finie et $f \in \mathcal{L}(E,F)$. Alors :

 $(i) \ f \ \text{est surjective} \quad \iff \quad (ii) \ f \ \text{est injective} \quad \iff \quad (iii) \ f \ \text{est bijective}.$

Méthode I

En dimension finie, pour montrer qu'un endomorphisme de E est bijectif, il suffit de montrer que f est injectif (en montrant par exemple que $\ker(f) = \{0_{\rm E}\}$) ou que f est surjectif (en montrant $\operatorname{Im}(f) = {\rm F}$).

PTSI (F. PUCCI) Chapitre 27

17/90

2. Isomorphismes et bases

Exemple 5 (Polynômes de Lagrange):

Soient $\alpha_0,\,\alpha_1,\,...,\,\alpha_n\in\mathbb{K}$ des scalaires deux à deux distincts et définissons l'application :

$$\begin{array}{cccc} \varphi: & \mathbb{K}_n[\mathbf{X}] & \longrightarrow & \mathbb{K}^{n+1} \\ & \mathbf{P} & \longmapsto & (\mathbf{P}(\alpha_0), \mathbf{P}(\alpha_1), \dots, \mathbf{P}(\alpha_n)) \end{array}$$

Alors:

 $\ensuremath{ \bullet}$ φ est linéaire.

PTSI (F. PUCCI) Chapitre 27 18/90

2. Isomorphismes et bases

Exemple 5 (Polynômes de Lagrange):

Soient $\alpha_0,\,\alpha_1,\,...,\,\alpha_n\in\mathbb{K}$ des scalaires deux à deux distincts et définissons l'application :

$$\begin{array}{cccc} \varphi: & \mathbb{K}_n[\mathbf{X}] & \longrightarrow & \mathbb{K}^{n+1} \\ & \mathbf{P} & \longmapsto & \left(\mathbf{P}(\alpha_0), \mathbf{P}(\alpha_1), \dots, \mathbf{P}(\alpha_n)\right) \end{array}$$

Alors:

 $oldsymbol{0}$ φ est linéaire.

 $\ensuremath{\mathfrak{Q}}$ φ est bijective car aisément injective entre deux espaces de même dimension n+1.

PTSI (F. PUCCI) Chapitre 27 18/90

2. Isomorphismes et bases

Exemple 5 (Polynômes de Lagrange):

Soient $\alpha_0,\,\alpha_1,\,...,\,\alpha_n\in\mathbb{K}$ des scalaires deux à deux distincts et définissons l'application :

$$\begin{array}{cccc} \varphi: & \mathbb{K}_n[\mathbf{X}] & \longrightarrow & \mathbb{K}^{n+1} \\ & \mathbf{P} & \longmapsto & (\mathbf{P}(\alpha_0), \mathbf{P}(\alpha_1), \dots, \mathbf{P}(\alpha_n)) \end{array}$$

Alors:

- \bullet φ est linéaire.
- \mathbf{Q} φ est bijective car aisément injective entre deux espaces de même dimension n+1.
- **③** L'image par φ^{-1} de la base canonique de \mathbb{K}^{n+1} est une base de $\mathbb{K}_n[\mathbf{X}]$ qui n'est autre que la base des polynômes de Lagrange $(\mathbf{L}_0, \dots, \mathbf{L}_n)$ associée à $(\alpha_0, \dots, \alpha_n)$:

$$\forall\,i\in \llbracket 0\,;n\rrbracket\,,\;\mathbf{L}_i(\alpha_j)=\delta_{i,j}\quad\text{ avec }\quad\mathbf{L}_i=\prod_{\substack{j=0\\i\neq i}}^n\frac{\mathbf{X}-\alpha_j}{\alpha_i-\alpha_j}.$$

Toute fonction définie sur un ensemble contenant les α_j coı̈ncide en chacun de ces (n+1) points avec le polynôme défini par :

$$P = \sum_{i=0}^{n} f(\alpha_i) L_i.$$

PTSI (F. PUCCI) Chapitre 27 18/90

2. Isomorphismes et bases

Exercice 5:

Montrer que P \longmapsto $(P(0), P'(0), \dots, P^{(n)}(0))$ est un isomorphisme de $\mathbb{K}_n[X]$ sur \mathbb{K}^{n+1} .

2. Isomorphismes et bases

Proposition 4:

Soient E et F deux K-espaces vectoriels de **même** dimension finie, et soit $f: \to F$ une application linéaire.

Les propositions suivantes sont équivalentes :

 $\ \, \bullet \, f$ est un isomorphisme de E sur F.

2. Isomorphismes et bases

Proposition 4:

Soient E et F deux K-espaces vectoriels de **même** dimension finie, et soit $f: \to F$ une application linéaire.

Les propositions suivantes sont équivalentes :

- lacktriangledown f est un isomorphisme de E sur F.
- $\textbf{@}\ f \text{ est inversible à gauche } \textit{i.e.}\ \exists\,g\in\mathcal{L}\left(\mathcal{F}\,;\mathcal{E}\right),\,g\circ f=\mathcal{I}d_{\mathcal{E}}.$

2. Isomorphismes et bases

Proposition 4

Soient E et F deux K-espaces vectoriels de **même** dimension finie, et soit $f: \to F$ une application linéaire.

Les propositions suivantes sont équivalentes :

- lacktriangledown f est un isomorphisme de E sur F.
- $\textbf{@} \ f \text{ est inversible à gauche } \textit{i.e.} \ \exists \, g \in \mathcal{L} \, (\mathrm{F}\,; \mathrm{E}), \, g \circ f = \mathrm{I} d_{\mathrm{E}}.$
- $\textbf{ @ } f \text{ est inversible à droite } i.e. \ \exists \, h \in \mathcal{L} \left(\mathcal{F} \, ; \mathcal{E} \right), \, f \circ h = \mathcal{I} d_{\mathcal{F}}.$

2. Isomorphismes et bases

Proposition 4

Soient E et F deux K-espaces vectoriels de **même** dimension finie, et soit $f: \to F$ une application linéaire.

Les propositions suivantes sont équivalentes :

- lacktriangledown f est un isomorphisme de E sur F.
- $\textbf{@} \ f \text{ est inversible à gauche } \textit{i.e.} \ \exists \, g \in \mathcal{L} \, (\mathrm{F}\,; \mathrm{E}), \, g \circ f = \mathrm{I} d_{\mathrm{E}}.$
- $\textbf{ @ } f \text{ est inversible à droite } i.e. \ \exists \, h \in \mathcal{L} \, (\mathbf{F} \, ; \mathbf{E}), \, f \circ h = \mathbf{I} d_{\mathbf{F}}.$

De plus, les inverses à gauche et à droite coı̈ncident nécessairement avec f^{-1} .

PTSI (F. PUCCI)

2. Isomorphismes et bases

Proposition 4

Soient E et F deux K-espaces vectoriels de **même** dimension finie, et soit $f: \to F$ une application linéaire.

Les propositions suivantes sont équivalentes :

- \bullet f est un isomorphisme de E sur F.
- $\textbf{@} \ f \text{ est inversible à gauche } \textit{i.e.} \ \exists \, g \in \mathcal{L} \, (\mathrm{F}\,; \mathrm{E}), \, g \circ f = \mathrm{I} d_{\mathrm{E}}.$
- $\textbf{ § } f \text{ est inversible à droite } i.e. \ \exists \, h \in \mathcal{L} \left(\mathcal{F} \, ; \mathcal{E} \right), \, f \circ h = \mathcal{I} d_{\mathcal{F}}.$

De plus, les inverses à gauche et à droite coïncident nécessairement avec f^{-1} .

Moralité : En dimension finie, l'existence d'un inverse à gauche ou à droite suffit à l'existence d'un inverse et, dans tous les cas, c'est le même.

2. Isomorphismes et bases

Ce résultat n'est plus vrai si on ne suppose pas les espaces ${\bf E}$ et ${\bf F}$ de même dimension finie.

ATTENTION

En effet, la dérivation D, par exemple, a un inverse à droite tel que D \circ P = I $d_{\rm E}$, mais on a P \circ D \neq I $d_{\rm F}$.

En particulier, D n'est pas un isomorphisme.

PTSI (F. PUCCI)

3. Espaces isomorphes

Précisons quelques propriétés des espaces isomorphes.

Rappel:

On dit que deux K-espaces vectoriels E et F sont isomorphes, noté E \simeq F, s'il existe un isomorphisme f entre eux.

3. Espaces isomorphes

Précisons quelques propriétés des espaces isomorphes.

Rappel:

On dit que deux K-espaces vectoriels E et F sont isomorphes, noté E \simeq F, s'il existe un isomorphisme f entre eux.

Remarque : La relation \simeq est une relation d'équivalence sur l'ensemble des espaces vectoriels (pas forcément de dimension finie).

3. Espaces isomorphes

Précisons quelques propriétés des espaces isomorphes.

Rappel:

On dit que deux \mathbb{K} -espaces vectoriels \mathcal{E} et \mathcal{F} sont isomorphes, noté $\mathcal{E} \simeq \mathcal{F}$, s'il existe un isomorphisme f entre eux.

Remarque : La relation \simeq est une relation d'équivalence sur l'ensemble des espaces vectoriels (pas forcément de dimension finie).

Une mathématicienne à son ami :

- Es-tu fidèle ?
- Oui, à $isomorphisme\ pr$ ès.

3. Espaces isomorphes

Soit E un $\mathbb{K}\text{-ev}$ et $\mathcal{F}=(x_1,\cdots,x_p)$ une famille de vecteurs de E.

On considère l'application

$$\phi_{\mathcal{F}}: \qquad \mathbb{K}^p \qquad \longrightarrow \quad \mathbf{F}$$

$$\begin{array}{cccc} \phi_{\mathcal{F}}: & \mathbb{K}^p & \longrightarrow & \mathbb{E} \\ & & (\lambda_1, \cdots, \lambda_p) & \longmapsto & \sum_{i=1}^p \lambda_i x_i \end{array}$$

 $\bullet \phi_{\mathcal{F}}$ est linéaire;

3. Espaces isomorphes

Proposition 5 (Morphisme de \mathbb{K}^n dans \mathbb{E})

Soit E un K-ev et $\mathcal{F}=(x_1,\cdots,x_p)$ une famille de vecteurs de E.

On considère l'application

$$\phi_{\mathcal{F}}: \qquad \mathbb{K}^p \qquad \longrightarrow \quad \mathbf{E}$$

$$(\lambda_1,\cdots,\lambda_p) \quad \longmapsto \quad \sum_{i=1}^p \lambda_i x_i$$

- \bullet $\phi_{\mathcal{F}}$ est linéaire;
- \mathcal{F} est génératrice $\iff \phi_{\mathcal{F}}$ est surjective;

3. Espaces isomorphes

Soit E un K-ev et $\mathcal{F} = (x_1, \dots, x_p)$ une famille de vecteurs de E.

On considère l'application

$$\phi_{\mathcal{F}}: \mathbb{K}^p \longrightarrow \mathbb{F}$$

$$\begin{array}{cccc} \phi_{\mathcal{F}}: & \mathbb{K}^p & \longrightarrow & \mathbf{E} \\ & & & \\ (\lambda_1, \cdots, \lambda_p) & \longmapsto & \sum_{i=1}^p \lambda_i x_i \end{array}$$

- $\bullet \phi_{\mathcal{T}}$ est linéaire;
- \mathcal{F} est génératrice $\iff \phi_{\mathcal{F}}$ est surjective;
- $\blacksquare \mathcal{F}$ est libre $\iff \phi_{\mathcal{F}}$ est injective;

3. Espaces isomorphes

Proposition 5 (Morphisme de \mathbb{K}^n dans \mathbb{E})

Soit E un K-ev et $\mathcal{F}=(x_1,\cdots,x_p)$ une famille de vecteurs de E.

On considère l'application

$$\phi_{\mathcal{F}}: \qquad \mathbb{K}^p \qquad \longrightarrow \quad \mathbf{E}$$

$$(\lambda_1,\cdots,\lambda_p) \quad \longmapsto \quad \sum_{i=1}^p \lambda_i x_i$$

- $\bullet \phi_{\mathcal{T}}$ est linéaire;
- \mathcal{F} est génératrice $\iff \phi_{\mathcal{F}}$ est surjective;
- $\blacksquare \mathcal{F}$ est libre $\iff \phi_{\mathcal{F}}$ est injective;
- $\blacksquare \mathcal{F}$ est une base de $E \iff \phi_{\mathcal{F}}$ est bijective;

3. Espaces isomorphes

Corollaire 3:

 \bullet Tout $\mathbb{K}\text{-ev}$ de dimension finie n est isomorphe à $\mathbb{K}^n.$

3. Espaces isomorphes

Corollaire 3:

- lacktriangle Tout \mathbb{K} -ev de dimension finie n est isomorphe à \mathbb{K}^n .
- 2 Deux K-ev de même dimension finie sont isomorphes.

3. Espaces isomorphes

Corollaire 3:

- Tout \mathbb{K} -ev de dimension finie n est isomorphe à \mathbb{K}^n .
- 2 Deux K-ev de même dimension finie sont isomorphes.

En combinant le corollaire (2) et le corollaire (3) on obtient :

Théorème 6:

Deux \mathbb{K} -ev de dimension finie sont isomorphes si, et seulement si ils ont même dimension.

PTSI (F. PUCCI)

3. Espaces isomorphes

Corollaire 3:

- Tout \mathbb{K} -ev de dimension finie n est isomorphe à \mathbb{K}^n .
- 2 Deux K-ev de même dimension finie sont isomorphes.

En combinant le corollaire (2) et le corollaire (3) on obtient :

Théorème 6:

Deux \mathbb{K} -ev de dimension finie sont isomorphes si, et seulement si ils ont même dimension.

Si on considère l'ensemble des espaces vectoriels de dimension finie, les classes d'équivalences pour la relation \simeq sont donc paramétrées par $\mathbb N$.

3. Espaces isomorphes

Méthode 2 (Montrer qu'un espace est de dimension finie):

Pour montrer que E est de dimension finie n, on dispose de deux méthodes :

 \blacksquare exhiber une base de n vecteurs.

3. Espaces isomorphes

Méthode 2 (Montrer qu'un espace est de dimension finie):

Pour montrer que E est de dimension finie n, on dispose de deux méthodes :

- \blacksquare exhiber une base de n vecteurs.
- lacktriangledown exhiber un isomorphisme avec un espace dont on sait qu'il est de dimension n.

3. Espaces isomorphes

Exemples 6:

 \blacksquare \mathbb{K}^n et \mathbb{K}^m sont isomorphes si et seulement si n=m.

PTSI (F. PUCCI) Chapitre 27

26/90

3. Espaces isomorphes

Exemples 6:

- \blacksquare \mathbb{K}^n et \mathbb{K}^m sont isomorphes si et seulement si n=m.
- \blacksquare \mathbb{R}^2 et \mathbb{R}^3 ne sont pas isomorphes

3. Espaces isomorphes

Exemples 6:

- \mathbb{K}^n et \mathbb{K}^m sont isomorphes si et seulement si n=m.
- $\blacksquare \ \mathbb{R}^2$ et \mathbb{R}^3 ne sont pas isomorphes
- $\blacksquare \ \mathbb{K}_n[\mathbf{X}]$ et \mathbb{K}^{n+1} sont isomorphes

PTSI (F. PUCCI)

3. Espaces isomorphes

Exemples 6:

- \blacksquare \mathbb{K}^n et \mathbb{K}^m sont isomorphes si et seulement si n=m.
- $\blacksquare \mathbb{R}^2$ et \mathbb{R}^3 ne sont pas isomorphes
- $\blacksquare \ \mathbb{K}_n[\mathbf{X}]$ et \mathbb{K}^{n+1} sont isomorphes
- L'ensemble $\mathcal S$ des fonctions $y:\mathbb R \longmapsto \mathbb K$ de classe $\mathcal C^2$ telles que ay'' + by' + cy = 0 est un sous-espace vectoriel de $\mathcal C^2\left(\mathbb R\,;\mathbb K\right)$ de dimension 2, puisqu'on a vu que l'application :

$$\begin{array}{cccc} \mathbf{T}_0: & \mathcal{S} & \longrightarrow & \mathbb{K}^2 \\ & y & \longmapsto & (y(t_0)\,;y'(t_0)) \end{array}$$

est un isomorphisme de \mathcal{S} dans \mathbb{K}^2 .

3. Espaces isomorphes

Exemples 6:

- \blacksquare \mathbb{K}^n et \mathbb{K}^m sont isomorphes si et seulement si n=m.
- $\blacksquare \mathbb{R}^2$ et \mathbb{R}^3 ne sont pas isomorphes
- \blacksquare $\mathbb{K}_n[\mathbf{X}]$ et \mathbb{K}^{n+1} sont isomorphes
- L'ensemble $\mathcal S$ des fonctions $y:\mathbb R \longmapsto \mathbb K$ de classe $\mathcal C^2$ telles que ay'' + by' + cy = 0 est un sous-espace vectoriel de $\mathcal C^2\left(\mathbb R\,;\mathbb K\right)$ de dimension 2, puisqu'on a vu que l'application :

$$\begin{array}{cccc} \mathbf{T}_0: & \mathcal{S} & \longrightarrow & \mathbb{K}^2 \\ & y & \longmapsto & (y(t_0)\,;y'(t_0)) \end{array}$$

est un isomorphisme de \mathcal{S} dans \mathbb{K}^2 .

■ L'ensemble \mathcal{S}_2 des suites récurrentes linéaires d'ordre 2 *i.e.* vérifiant une relation de la forme $u_{n+2} = au_{n+1} + bu_n$ avec $(a;b) \neq (0;0)$ est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$ de dimension 2 en considérant l'isomorphisme :

$$\begin{array}{cccc} \Psi: & \mathcal{S}_2 & \longrightarrow & \mathbb{K}^2 \\ & (u_n)_{n \in \mathbb{N}} & \longmapsto & (u_0\,; u_1) \end{array}$$

- 1 Isomorphismes en dimension finie
- 2 Définition d'une application linéaire
 - À partir de l'image d'une base
 - À partir d'espaces supplémentaires
- 3 Rang d'une application linéaire
- 4 Formes linéaires et hyperplans
- 5 Endomorphismes remarquables : projecteurs et symétries

Exemple 7:

Soit E un espace de dimension finie n et $\mathcal{B}=(e_1,\dots,e_n)$ une base de E.

 $\forall\,i\in [\![1\,;n]\!], \, \text{l'application}\,\,\varphi_i: \qquad \qquad \mathbb{E} \qquad \longrightarrow \quad \mathbb{K} \quad \text{est une forme linéaire appelée} \\ (x_1,\dots,x_n)_{\mathcal{B}} \quad \longmapsto \quad x_i$

fonction ième coordonnée.

En particulier, $\forall \ (i \, ; j) \in \llbracket 1 \, ; n \rrbracket \times \llbracket 1 \, ; n \rrbracket, \quad \varphi_i(e_i) = \delta_{ij}.$

1. À partir de l'image d'une base

Théorème 7:

On considère E et F deux \mathbb{K} -ev avec dim (E) = n.

Pour toute base $\mathcal{B}=(e_1,\cdots,e_n)$ de E et toute famille $\mathcal{F}=(f_1,\cdots,f_n)$ de vecteurs de F, il existe une, et une seule application linéaire g de E dans F vérifiant :

$$\forall\,i\in \llbracket 1\,;n\rrbracket\,,\quad g(e_i)=f_i.$$

1. À partir de l'image d'une base

Théorème 7:

On considère E et F deux \mathbb{K} -ev avec dim (E) = n.

Pour toute base $\mathcal{B}=(e_1,\cdots,e_n)$ de E et toute famille $\mathcal{F}=(f_1,\cdots,f_n)$ de vecteurs de F, il existe une, et une seule application linéaire g de E dans F vérifiant :

$$\forall\,i\in\llbracket 1\,;n\rrbracket\,,\quad g(e_i)=f_i.$$

À retenir

Corollaire 4:

■ Une application linéaire est uniquement déterminée par l'image d'une base.

PTSI (F. PUCCI)

1. À partir de l'image d'une base

Théorème 7:

On considère E et F deux K-ev avec $\dim(E) = n$.

Pour toute base $\mathcal{B}=(e_1,\cdots,e_n)$ de E et toute famille $\mathcal{F}=(f_1,\cdots,f_n)$ de vecteurs de F, il existe une, et une seule application linéaire g de E dans F vérifiant :

$$\forall\,i\in\llbracket 1\,;n\rrbracket\,,\quad g(e_i)=f_i.$$

À retenir

Corollaire 4:

- Une application linéaire est uniquement déterminée par l'image d'une base.
- Deux applications linéaires qui coïncident sur une base sont égales.

1. À partir de l'image d'une base

Exemple 8:

Considérons l'ensemble P des vecteurs du plan muni d'une base (\vec{i}, \vec{j}) .

La donnée de
$$f(\vec{i}) = 3\vec{i} - 2\vec{j}$$
 et $f(\vec{j}) = \vec{i} + \vec{j}$ suffit à définir $f \in \mathcal{L}(P)$.

Par exemple, si $\vec{u} = 3\vec{i} + 5\vec{j}$, on a $f(\vec{u}) = ...$

1. À partir de l'image d'une base

Une application:

Proposition 8

Soient E et F deux K-espaces vectoriels de dimension finie.

Alors $\mathcal{L}(E;F)$ est un espace vectoriel de dimension finie et :

$$\dim\left(\mathcal{L}\left(E\,;F\right)\right)=\dim\left(E\right)\times\dim\left(F\right).$$

1. À partir de l'image d'une base

Une application:

Proposition 8

Soient E et F deux K-espaces vectoriels de dimension finie.

Alors $\mathcal{L}(E; F)$ est un espace vectoriel de dimension finie et :

$$\dim\left(\mathcal{L}\left(E\,;F\right)\right)=\dim\left(E\right)\times\dim\left(F\right).$$

Exemple 9 (Dimension du dual en dimension finie):

Soit E un espace vectoriel de dimension finie.

L'ensemble $E^* = \mathcal{L}(E; \mathbb{K})$ des formes linéaires sur E a donc même dimension que E.

1. À partir de l'image d'une base

Exercice 6:

Considérons (e_1,\dots,e_n) une base de E et $(\varphi_1,\dots,\varphi_n)$ les applications coordonnées correspondantes.

Montrer que $(\varphi_1, \dots, \varphi_n)$ est une base de E*, appelée base duale de (e_1, \dots, e_n) .

2. À partir d'espaces supplémentaires

Proposition 9

Soient E et F deux \mathbb{K} -ev et $f \in \mathcal{L}(\mathcal{E};\mathcal{F})$;

Si ${\bf E}={\bf E}_1\oplus {\bf E}_2$ alors f est entièrement déterminée par ses restrictions à ${\bf E}_1$ et ${\bf E}_2.$

2. À partir d'espaces supplémentaires

Proposition 9

Soient E et F deux K-ev et $f \in \mathcal{L}(E; F)$;

Si ${\bf E}={\bf E}_1\oplus {\bf E}_2$ alors f est entièrement déterminée par ses restrictions à ${\bf E}_1$ et ${\bf E}_2.$

Exercice 7:

Soit E un \mathbb{R} -ev et $f \in \mathcal{L}(E)$ tel que $f^2 - 3f + 2Id_E = 0$.

PTSI (F. PUCCI)

2. À partir d'espaces supplémentaires

Proposition 9

Soient E et F deux K-ev et $f \in \mathcal{L}(E; F)$;

Si ${\bf E}={\bf E}_1\oplus {\bf E}_2$ alors f est entièrement déterminée par ses restrictions à ${\bf E}_1$ et ${\bf E}_2.$

Exercice 7:

Soit E un \mathbb{R} -ev et $f \in \mathcal{L}(E)$ tel que $f^2 - 3f + 2Id_E = 0$.

- $\begin{aligned} & \textbf{ Simplifier } (f \mathbf{I} d_{\mathbf{E}}) \circ (f 2 \mathbf{I} d_{\mathbf{E}}). \\ & \textbf{ En déduire que } \operatorname{Im} (f 2 \mathbf{I} d_{\mathbf{E}}) \subset \ker (f \mathbf{I} d_{\mathbf{E}}). \end{aligned}$

PTSI (F. PUCCI)

2. À partir d'espaces supplémentaires

Proposition 9

Soient E et F deux K-ev et $f \in \mathcal{L}(E; F)$;

Si ${\bf E}={\bf E}_1\oplus {\bf E}_2$ alors f est entièrement déterminée par ses restrictions à ${\bf E}_1$ et ${\bf E}_2.$

Exercice 7:

Soit E un \mathbb{R} -ev et $f \in \mathcal{L}(E)$ tel que $f^2 - 3f + 2Id_E = 0$.

- Simplifier $(f \mathrm{I}d_{\mathrm{E}}) \circ (f 2\mathrm{I}d_{\mathrm{E}})$. En déduire que $\mathrm{Im}\,(f - 2\mathrm{I}d_{\mathrm{E}}) \subset \ker\,(f - \mathrm{I}d_{\mathrm{E}})$.
- $\textbf{ 3} \ \, \text{Montrer que Im} \, (f \mathrm{I}d_{\mathrm{E}}) \subset \ker \, (f 2\mathrm{I}d_{\mathrm{E}}).$

PTSI (F. PUCCI) Cha

2. À partir d'espaces supplémentaires

Proposition 9

Soient E et F deux K-ev et $f \in \mathcal{L}(E; F)$;

Si ${\bf E}={\bf E}_1\oplus {\bf E}_2$ alors f est entièrement déterminée par ses restrictions à ${\bf E}_1$ et ${\bf E}_2.$

Exercice 7:

Soit E un \mathbb{R} -ev et $f \in \mathcal{L}(\mathbf{E})$ tel que $f^2 - 3f + 2\mathbf{I}d_{\mathbf{E}} = 0$.

- Simplifier $(f \mathrm{I}d_{\mathrm{E}}) \circ (f 2\mathrm{I}d_{\mathrm{E}})$. En déduire que $\mathrm{Im}\,(f - 2\mathrm{I}d_{\mathrm{E}}) \subset \ker\,(f - \mathrm{I}d_{\mathrm{E}})$.
- $\textbf{ 3} \ \, \text{Montrer que Im} \, (f \mathrm{I}d_{\mathrm{E}}) \subset \ker \, (f 2\mathrm{I}d_{\mathrm{E}}).$
- $\ensuremath{ \bullet }$ Prouver que $\ensuremath{ {\bf E} } = \ker \left(f \ensuremath{ {\bf I} } d_{\ensuremath{ {\bf E} }} \right) \oplus \ker \left(f \ensuremath{ {\bf 2} } \ensuremath{ {\bf I} } d_{\ensuremath{ {\bf E} }} \right)$

 $\label{eq:Aide:Ide} \mbox{Aide}: \mbox{Id}_{\mbox{\bf E}} = (f - \mbox{Id}_{\mbox{\bf E}}) - (f - 2 \mbox{Id}_{\mbox{\bf E}}).$

33 / 90

- 1 Isomorphismes en dimension finie
- 2 Définition d'une application linéaire
- 3 Rang d'une application linéaire
 - Généralités
 - Rang d'une composée
 - Théorème du rang
- 4 Formes linéaires et hyperplans
- 5 Endomorphismes remarquables : projecteurs et symétries

PTSI (F. PUCCI) Cha

1. Généralités

Définition 2:

Soient E et F deux K-ev de dimension finie, et $f \in \mathcal{L}(E, F)$.

On appelle rang de f la dimension de $\mathrm{Im}\,(f)$:

$$\operatorname{rg}\left(f\right)=\dim\left(\operatorname{Im}\left(f\right)\right).$$

Exemples 10:

■ Le rang de l'application nulle est nul : rg $\left(0_{\mathcal{L}(E;F)}\right) = 0$, et c'est la seule telle application.

1. Généralités

Définition 2:

Soient E et F deux K-ev de dimension finie, et $f \in \mathcal{L}(E, F)$.

On appelle rang de f la dimension de $\mathrm{Im}\,(f)$:

$$\operatorname{rg}\left(f\right)=\dim\left(\operatorname{Im}\left(f\right)\right).$$

Exemples 10:

- Le rang de l'application nulle est nul : rg $\left(0_{\mathcal{L}(E;F)}\right)=0,$ et c'est la seule telle application.
- $\label{eq:sigma} \blacksquare \mbox{ Si } p_1: \quad \mathbb{R}^2 \qquad \longrightarrow \quad \mathbb{R} \quad \mbox{alors } \operatorname{rg}\left(p_1\right) = 1.$ $(x,y) \quad \longmapsto \quad x$

35 / 90

1. Généralités

Définition 2:

Soient E et F deux K-ev de dimension finie, et $f \in \mathcal{L}(E, F)$.

On appelle rang de f la dimension de $\mathrm{Im}\,(f)$:

$$\operatorname{rg}\left(f\right)=\dim\left(\operatorname{Im}\left(f\right)\right).$$

Exemples 10:

- Le rang de l'application nulle est nul : rg $\left(0_{\mathcal{L}(E;F)}\right)=0,$ et c'est la seule telle application.
- $\label{eq:sigma} \begin{array}{cccc} \bullet & \mathrm{Si}\ p_1: & \mathbb{R}^2 & \longrightarrow & \mathbb{R} & \mathrm{alors}\ \mathrm{rg}\,(p_1) = 1. \\ & (x,y) & \longmapsto & x \end{array}$
- Plus généralement, si φ est une forme linéaire non nulle, alors rg $(\varphi) = 1$.

PTSI (F. PUCCI) Chapitre 27 35/90

1. Généralités

Définition 2:

Soient E et F deux K-ev de dimension finie, et $f \in \mathcal{L}(E, F)$.

On appelle rang de f la dimension de $\mathrm{Im}\,(f)$:

$$\operatorname{rg}\left(f\right)=\dim\left(\operatorname{Im}\left(f\right)\right).$$

Exemples 10:

- Le rang de l'application nulle est nul : rg $\left(0_{\mathcal{L}(E;F)}\right)=0,$ et c'est la seule telle application.
- $\label{eq:sigma} \begin{array}{cccc} \bullet & \mathrm{Si}\ p_1: & \mathbb{R}^2 & \longrightarrow & \mathbb{R} & \mathrm{alors}\ \mathrm{rg}\,(p_1) = 1. \\ & (x,y) & \longmapsto & x \end{array}$
- Plus généralement, si φ est une forme linéaire non nulle, alors $\operatorname{rg}(\varphi) = 1$.
- \blacksquare Si E = F \oplus G, et p est le projecteur sur F parallèlement à G, alors rg $(p)=\dim{\rm (F)}.$

1. Généralités

Définition 2:

Soient E et F deux K-ev de dimension finie, et $f \in \mathcal{L}(E, F)$.

On appelle rang de f la dimension de $\mathrm{Im}\,(f)$:

$$\operatorname{rg}\left(f\right)=\dim\left(\operatorname{Im}\left(f\right)\right).$$

Exemples 10:

- Le rang de l'application nulle est nul : rg $\left(0_{\mathcal{L}(E;F)}\right)=0,$ et c'est la seule telle application.
- $\bullet \ \mbox{Si} \ p_1: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R} \quad \mbox{alors} \ \mbox{rg} \left(p_1\right) = 1.$ $(x,y) \quad \longmapsto \quad x$
- Plus généralement, si φ est une forme linéaire non nulle, alors $\operatorname{rg}(\varphi) = 1$.
- Si $E = F \oplus G$, et p est le projecteur sur F parallèlement à G, alors rg(p) = dim(F).
- Si E est de dimension finie et $\lambda \neq 0$, alors rg $(\lambda Id_E) = \dim(E)$.

35 / 90

1. Généralités

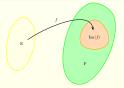
Théorème 10 (Inégalités sur le rang et cas d'égalité) :

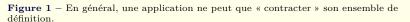
Soient E et F deux K-espaces vectoriels et $f\in\mathcal{L}\left(\mathrm{E}\,;\mathrm{F}\right) .$

$$\operatorname{rg}(f) \leq \min(\dim(E); \dim(F)).$$

Plus précisément :

• Si F est de dimension finie, f est de rang fini et $\operatorname{rg}(f) \leq \dim(F)$, avec égalité si, et seulement si f est surjective.





36 / 90

1. Généralités

Théorème 10 (Inégalités sur le rang et cas d'égalité) :

Soient E et F deux K-espaces vectoriels et $f \in \mathcal{L}(E; F)$.

$$\operatorname{rg}(f) \leq \min(\dim(E); \dim(F)).$$

Plus précisément :

- Si F est de dimension finie, f est de rang fini et $\operatorname{rg}(f) \leq \dim(F)$, avec égalité si, et seulement si f est surjective.
- ② Si E est de dimension finie, f est de rang fini et $\operatorname{rg}(f) \leq \dim(E)$, avec égalité si, et seulement si f est injective.

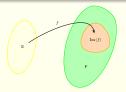


Figure 1 – En général, une application ne peut que « contracter » son ensemble de définition.

36 / 90

1. Généralités

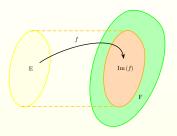


Figure 2 – f est injective si, et seulement si $\operatorname{rg}(f) = \dim(E)$.

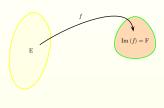


Figure 3 - f est surjective si, et seulement si rg $(f) = \dim(F)$.

37/90

1. Généralités

Exercice 8:

Soit E un K-ev de dimension finie et soit $f \in \mathcal{L}(E)$.

Montrer que

$$\mathbf{E} = \ker\left(\hat{f}\right) \oplus \mathrm{Im}\left(f\right) \iff \mathbf{E} = \ker\left(f\right) + \mathrm{Im}\left(f\right) \iff \ker\left(f\right) \cap \mathrm{Im}\left(f\right) = \{\mathbf{0}_{\mathbf{E}}\}.$$

2. Rang d'une composée

Proposition 11:

Soient E, F, G des K-ev. On considère $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$.

Alors:

$$\operatorname{rg}\left(g\circ f\right)\leqslant\min\left(\operatorname{rg}\left(f\right);\operatorname{rg}\left(g\right)\right).$$

2. Rang d'une composée

Proposition 1:

Soient E, F, G des K-ev. On considère $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

Alors:

$$\operatorname{rg}\left(g\circ f\right)\leqslant\min\left(\operatorname{rg}\left(f\right);\operatorname{rg}\left(g\right)\right).$$

Proposition 12:

Soient E, F, G, H des K-ev et $f \in \mathcal{L}(E, F)$.

Si $u \in \mathcal{L}(G; E)$ et $v \in \mathcal{L}(F; H)$ sont des **isomorphismes** alors :

$$\operatorname{rg}(f) = \operatorname{rg}(f \circ u) = \operatorname{rg}(v \circ f).$$

Le rang est inchangé par isomorphisme.

2. Rang d'une composée

Exercice 9 (Inégalité triangulaire):

On considère deux endomorphismes f et g d'un espace E de dimension finie.

Établir que
$$\left|\operatorname{rg}\left(g\right)-\operatorname{rg}\left(f\right)\right|\leqslant\operatorname{rg}\left(g+f\right)\leqslant\operatorname{rg}\left(g\right)+\operatorname{rg}\left(f\right).$$

3. Théorème du rang

Théorème 13:

Soient E et F deux K-ev avec E de dimension finie. On considère $f \in \mathcal{L}(E, F)$.

Tout supplémentaire de $\ker(f)$ est isomorphe à $\operatorname{Im}(f)$.

En particulier,

$$\dim (\ker (f)) + \operatorname{rg} (f) = \dim (E).$$

3. Théorème du rang

Remarques:

 \bullet La dimension de l'image ${\rm Im}\,(f)$ est inférieure ou égale à la dimension de l'espace de départ.

C'est la dimension du noyau qui fixe la perte entre $\dim(E)$ et $\dim(\operatorname{Im}(f))$.

3. Théorème du rang

Remarques:

- La dimension de l'image Im (f) est inférieure ou égale à la dimension de l'espace de départ.
 C'est la dimension du noyau qui fixe la perte entre dim (E) et dim (Im (f)).
- 2 La dimension de l'espace d'arrivée n'intervient pas.

3. Théorème du rang

Remarques:

- La dimension de l'image Im (f) est inférieure ou égale à la dimension de l'espace de départ.
 - C'est la dimension du noyau qui fixe la perte entre $\dim\left(\mathrm{E}\right)$ et $\dim\left(\mathrm{Im}\left(f\right) \right) .$
- 2 La dimension de l'espace d'arrivée n'intervient pas.
- **3** Cette formule permet de trouver $\dim(E)$, $\operatorname{rg}(u)$ ou $\dim(\ker(u))$: suivant les 2 quantités que l'on connait, on peut en déduire la $3^{\operatorname{ème}}$.

3. Théorème du rang

Remarques:

- La dimension de l'image Im (f) est inférieure ou égale à la dimension de l'espace de départ.
 - C'est la dimension du noyau qui fixe la perte entre $\dim (E)$ et $\dim (\operatorname{Im} (f))$.
- 2 La dimension de l'espace d'arrivée n'intervient pas.
- \odot Cette formule permet de trouver dim (E), rg (u) ou dim (ker (u)) : suivant les 2 quantités que l'on connait, on peut en déduire la 3ème.
- Prenez le temps de réfléchir qu'en dimension finie et d'après le théorème du rang :

3. Théorème du rang

Remarques:

- La dimension de l'image Im (f) est inférieure ou égale à la dimension de l'espace de départ.
 C'est la dimension du noyau qui fixe la perte entre dim (E) et dim (Im (f)).
- 2 La dimension de l'espace d'arrivée n'intervient pas.
- **3** Cette formule permet de trouver $\dim(E)$, $\operatorname{rg}(u)$ ou $\dim(\ker(u))$: suivant les 2 quantités que l'on connait, on peut en déduire la $3^{\operatorname{ème}}$.
- Prenez le temps de réfléchir qu'en dimension finie et d'après le théorème du rang :
 - Il n'existe pas de d'application linéaire injective de \mathbb{R}^3 dans \mathbb{R}^2 .

PTSI (F. PUCCI) Chapitre 27 42/90

3. Théorème du rang

Remarques:

- La dimension de l'image Im (f) est inférieure ou égale à la dimension de l'espace de départ.
 - C'est la dimension du noyau qui fixe la perte entre $\dim\left(\mathrm{E}\right)$ et $\dim\left(\mathrm{Im}\left(f\right) \right) .$
- 2 La dimension de l'espace d'arrivée n'intervient pas.
- **©** Cette formule permet de trouver $\dim(E)$, $\operatorname{rg}(u)$ ou $\dim(\ker(u))$: suivant les 2 quantités que l'on connait, on peut en déduire la $3^{\operatorname{ème}}$.
- Prenez le temps de réfléchir qu'en dimension finie et d'après le théorème du rang :
 - Il n'existe pas de d'application linéaire injective de \mathbb{R}^3 dans \mathbb{R}^2 .
 - Il n'existe pas de d'application linéaire surjective de \mathbb{R}^2 dans \mathbb{R}^3 .

PTSI (F. PUCCI) Chapitre 27 42/90

3. Théorème du rang

Remarques:

- \bullet La dimension de l'image Im (f) est inférieure ou égale à la dimension de l'espace de départ.
 - C'est la dimension du noyau qui fixe la perte entre $\dim (E)$ et $\dim (\operatorname{Im} (f))$.
- 2 La dimension de l'espace d'arrivée n'intervient pas.
- **©** Cette formule permet de trouver $\dim(E)$, $\operatorname{rg}(u)$ ou $\dim(\ker(u))$: suivant les 2 quantités que l'on connait, on peut en déduire la $3^{\operatorname{ème}}$.
- Prenez le temps de réfléchir qu'en dimension finie et d'après le théorème du rang :
 - Il n'existe pas de d'application linéaire injective de \mathbb{R}^3 dans \mathbb{R}^2 .
 - Il n'existe pas de d'application linéaire surjective de \mathbb{R}^2 dans \mathbb{R}^3 .

Contre-Exemples 11:

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 est linéaire, injective, mais non surjective.
 $(x,y) \longmapsto (x,y,x-y)$

PTSI (F. PUCCI) Chapitre 27 42/90

3. Théorème du rang

Exercice 10:

• Vérifier que les applications suivantes sont linéaires.

3. Théorème du rang

Exercice 10:

- Vérifier que les applications suivantes sont linéaires.
 - $\label{eq:force_force} \bullet \ f: \mathbb{R}^2 \to \mathbb{R}^3 \ \text{définie par} \ f((x,y)) = (4x,y-x,2x+y).$

3. Théorème du rang

Exercice 10:

- Vérifier que les applications suivantes sont linéaires.

 - $\begin{array}{l} \bullet \quad f: \mathbb{R}^2 \to \mathbb{R}^3 \ \text{définie par } f((x,y)) = (4x,y-x,2x+y). \\ \bullet \quad g: \mathbb{R}^3 \to \mathbb{R}^2 \ \text{définie par } g((x,y,z)) = (2x+y-z,x-y). \end{array}$

3. Théorème du rang

Exercice 10:

- Vérifier que les applications suivantes sont linéaires.
 - $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f((x,y)) = (4x, y x, 2x + y).
 - **9** $g: \mathbb{R}^3 \to \mathbb{R}^2$ définie par g((x,y,z)) = (2x+y-z,x-y).
- 2 Déterminer une base du noyau, et une base de l'image pour chacune d'elles.

3. Théorème du rang

Il s'agit d'une égalité de dimension, pas d'espaces! On n'a pas, en général, $\mathbf{E} = \mathrm{Im}\,(f) \oplus \ker{(f)} : \ker{(f)}$ et $\mathrm{Im}\,(f)$ ne sont pas nécessairement supplémentaires.

■ En général, ils ne sont même pas dans le même espace $(\ker(f) \subset E \text{ et Im}(f) \subset F)!$

ATTENTION

PTSI (F. PUCCI)

3. Théorème du rang

TTENTION

Il s'agit d'une égalité de dimension, pas d'espaces! On n'a pas, en général, $\mathbf{E} = \mathrm{Im}\,(f) \oplus \ker\,(f) : \ker\,(f)$ et $\mathrm{Im}\,(f)$ ne sont pas nécessairement supplémentaires.

- En général, ils ne sont même pas dans le même espace $(\ker(f) \subset E \text{ et Im } (f) \subset F)!$
- Même lorsque f est un endomorphisme, on n'a pas nécessairement $\ker(f) \oplus \operatorname{Im}(f) = \mathbf{E}!$

Par exemple, pour
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 On a $(x,y) \longmapsto (y,0)$.

 $\ker\left(f\right)=\mathrm{Im}\left(f\right)=\mathbb{R}\left(1\,;0\right)\, \colon \ker\left(f\right) \, \mathrm{et} \, \, \mathrm{Im}\left(f\right) \, \mathrm{ne} \, \, \mathrm{sont} \, \, \mathrm{pas}$ supplémentaires dans $\mathbb{R}^{2}.$

3. Théorème du rang

À l'aide du théorème (13) on redémontre aisément des résultats connus :

Corollaire 5 (Caractérisation des isomorphismes):

① Soient E et F deux K-ev de **même** dimension **finie** et $f \in \mathcal{L}(E; F)$. f est injective $\iff f$ est surjective $\iff f$ est bijective.

3. Théorème du rang

À l'aide du théorème (13) on redémontre aisément des résultats connus :

Corollaire 5 (Caractérisation des isomorphismes):

- **②** Soient E et F deux K-ev de **même** dimension **finie** et $f \in \mathcal{L}(E; F)$.

 f est injective $\iff f$ est surjective $\iff f$ est bijective.
- **2** Soient E un K-ev de dimension finie et $f \in \mathcal{L}(E)$.

$$\ker(f) = \{0\} \iff \operatorname{Im}(f) = \operatorname{E} \iff \operatorname{rg} f = \dim(\operatorname{E}) \iff f \in \mathcal{G}l(\operatorname{E})$$

3. Théorème du rang

Ce corollaire n'est plus vrai en dimension infinie!

Contre-Exemples 12:

 $\blacksquare \ g: \ \mathbb{R}[X] \ \longrightarrow \ \mathbb{R}[X]$ est un endomorphisme injectif, mais $P \ \longmapsto \ XP$

non surjectif.

3. Théorème du rang

ATTENTION

Ce corollaire n'est plus vrai en dimension infinie!

Contre-Exemples 12:

- $g: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$ est un endomorphisme injectif, mais $P \longmapsto XP$ non surjectif.
- \blacksquare $h:~\mathbb{R}[X]~\longrightarrow~\mathbb{R}[X]~$ est un endomorphisme surjectif, mais $P~\longmapsto~P'$ non injectif.

PTSI (F. PUCCI)

3. Théorème du rang

Exercice 11:

Soit $E = \mathbb{R}_n[X]$, le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n (n entier naturel donné).

Soit φ l'application définie par :

$$\forall\, \mathbf{P} \in \mathbf{E}, \ \varphi(\mathbf{P}) = \mathbf{P}(\mathbf{X} + 1) - \mathbf{P}(\mathbf{X}).$$

 ${\color{red} \bullet}$ Vérifier que φ est un endomorphisme de E.

3. Théorème du rang

Exercice 11:

Soit $E = \mathbb{R}_n[X]$, le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n (n entier naturel donné).

Soit φ l'application définie par :

$$\forall P \in E, \ \varphi(P) = P(X+1) - P(X).$$

- ${\bf 4}$ Vérifier que φ est un endomorphisme de E.
- 2 Déterminer $\ker(\varphi)$ et $\operatorname{Im}(\varphi)$.

- 1 Isomorphismes en dimension finie
- 2 Définition d'une application linéaire
- 3 Rang d'une application linéaire
- 4 Formes linéaires et hyperplans
 - Équations linaires
 - Hyperplans
 - \bullet Interprétation géométrique d'un système d'équations linéaires homogène
- 5 Endomorphismes remarquables : projecteurs et symétries

PTSI (F. PUCCI)

1. Équations linaires

Rappel:

■ On appelle équation linéaire toute équation de la forme f(x) = b avec :

1. Équations linaires

Rappel:

- On appelle équation linéaire toute équation de la forme f(x) = b avec :
 - $\bullet \ f: \to {\mathbb F}$, une application linéaire.

1. Équations linaires

Rappel:

- On appelle équation linéaire toute équation de la forme f(x) = b avec :
 - $\bullet \ f: \to \to {\mathbb F}$, une application linéaire.
 - $b \in \mathcal{F}$, appelé second membre de l'équation.

1. Équations linaires

Rappel:

- On appelle équation linéaire toute équation de la forme f(x) = b avec :
 - $f: \to F$, une application linéaire.
 - $b \in \mathcal{F}$, appelé second membre de l'équation.
 - $x \in \mathcal{E}$, un vecteur quel
conque.

PTSI (F. PUCCI)

1. Équations linaires

Rappel:

- On appelle équation linéaire toute équation de la forme f(x) = b avec :
 - $f: \to F$, une application linéaire.
 - $b \in \mathbb{F}$, appelé second membre de l'équation.
 - $x \in \mathcal{E}$, un vecteur quel
conque.
- \blacksquare On appelle équation homogène associée à f(x)=b l'équation linéaire $f(x)=0_{\rm F}.$

1. Équations linaires

Proposition 14:

Soit $f: \to F$, une application linéaire.

 \bullet L'ensemble (\mathcal{S}_0) des solutions de $f(x)=0_{\mathrm{F}}$ est $\ker{(f)}.$

1. Équations linaires

Proposition 14

Soit $f: \to F$, une application linéaire.

- **1** L'ensemble (\mathcal{S}_0) des solutions de $f(x) = 0_F$ est ker (f).
- $\mbox{\bf 2}$ L'ensemble (\mathcal{S}) des solutions de f(x)=b est non vide si, et seulement si $b\in {\rm Im}\,(f)$ et, dans ce cas :

$$(\mathcal{S})=x_0+(\mathcal{S}_0),$$

où x_0 est une solution particulière de f(x) = b.

1. Équations linaires

Proposition 14

Soit $f: \to F$, une application linéaire.

- $\ \, \bullet \,$ L'ensemble $(\mathcal S_0)$ des solutions de $f(x)=0_{\rm F}$ est $\ker{(f)}.$
- ② L'ensemble (S) des solutions de f(x)=b est non vide si, et seulement si $b\in {\rm Im}\,(f)$ et, dans ce cas :

$$(\mathcal{S})=x_0+(\mathcal{S}_0),$$

où x_0 est une solution particulière de f(x) = b.

Remarque : Si f est bijective, l'équation linéaire f(x) = b admet une unique solution.

1. Équations linaires

Exemples 13:

 \blacksquare Un système d'équations linéaires de n équations à p inconnues :

est une équation linéaire f(X) = B avec

51/90

1. Équations linaires

Exemples 13:

■ Les droites, les plans de l'espace sont caractérisés par une équation linéaire.

•
$$(\mathcal{P})=\left\{(x\,;y\,;z)\in\mathbb{R}^3\,/\,\Phi\,(x\,;y\,;z)=0_{\mathbb{R}}\right\}=\Phi^{-1}(0_{\mathbb{R}})$$
 où

$$\Phi: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}$$
$$(x;y;z) \quad \longmapsto \quad x+y+z$$

1. Équations linaires

Exemples 13:

■ Les droites, les plans de l'espace sont caractérisés par une équation linéaire.

•
$$(\mathcal{P})=\{(x\,;y\,;z)\in\mathbb{R}^3\,/\,\Phi\,(x\,;y\,;z)=0_\mathbb{R}\}=\Phi^{-1}(0_\mathbb{R})$$
 où

$$\Phi: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}$$
$$(x;y;z) \quad \longmapsto \quad x+y+z$$

•
$$(\mathcal{D})=\left\{(x\,;y\,;z)\in\mathbb{R}^3\,/\,\varphi\,(x\,;y\,;z)=0_{\mathbb{R}^2}\right\}=\varphi^{-1}(0_{\mathbb{R}^2})$$
où

$$\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x;y;z) \longmapsto \begin{pmatrix} x+y+z \\ x-y \end{pmatrix}$$

PTSI (F. PUCCI)

1. Équations linaires

Exemples 13:

 \blacksquare Toute équation différentielle linéaire d'ordre un y'+a(t)y=b(t) peut être interprétée comme une équation linéaire f(y)=b(t) avec

$$\begin{array}{cccc} f: & \mathcal{C}^1 \left(\mathbf{I} \, ; \mathbb{R} \right) & \longrightarrow & \mathcal{C}^0 \left(\mathbf{I} \, ; \mathbb{R} \right) & & \mathrm{et} & b \in \mathcal{C}^0 \left(\mathbf{I} \, ; \mathbb{R} \right). \\ \\ & y & \longmapsto & y' + ay \end{array}$$

2. Hyperplans

Rappel:

Soit E espace vectoriel sur K (pas forcément de dimension finie).

On appelle forme linéaire sur E toute application linéaire de E dans \mathbb{K} .

On note $E^* = \mathcal{L}(E; \mathbb{K})$ leur ensemble.

2. Hyperplans

Rappel:

Soit E espace vectoriel sur K (pas forcément de dimension finie).

On appelle forme linéaire sur E toute application linéaire de E dans K.

On note $E^* = \mathcal{L}(E; \mathbb{K})$ leur ensemble.

Définition (Hyperplan):

Soit E un K-espace vectoriel (pas forcément de dimension finie).

On appelle hyperplan de E tout noyau d'une forme linéaire NON NULLE de E.

PTSI (F. PUCCI)

2. Hyperplans

Rappel:

Soit E espace vectoriel sur K (pas forcément de dimension finie).

On appelle forme linéaire sur E toute application linéaire de E dans \mathbb{K} .

On note $E^* = \mathcal{L}(E; \mathbb{K})$ leur ensemble.

Définition (Hyperplan):

Soit E un K-espace vectoriel (pas forcément de dimension finie).

On appelle hyperplan de E tout noyau d'une forme linéaire NON NULLE de E.

Le noyau de la forme linéaire nulle $x \longmapsto 0_{\mathcal{E}}$ est \mathcal{E} tout entier.

On précise donc « non nulle » dans la définition pour éviter que E lui-même soit un hyperplan de E.

2. Hyperplans

Rappel:

Soit E espace vectoriel sur K (pas forcément de dimension finie).

On appelle forme linéaire sur E toute application linéaire de E dans \mathbb{K} .

On note $E^* = \mathcal{L}(E; \mathbb{K})$ leur ensemble.

Définition (Hyperplan):

Soit E un K-espace vectoriel (pas forcément de dimension finie).

On appelle hyperplan de E tout noyau d'une forme linéaire NON NULLE de E.

Le noyau de la forme linéaire nulle $x \longmapsto 0_{\mathcal{E}}$ est \mathcal{E} tout entier.

On précise donc « non nulle » dans la définition pour éviter que E lui-même soit un hyperplan de E.

Conséquence : En dimension finie, tout Hyperplan est un ensemble décrit pa une équation linéaire non nulle sur les coordonnées dans une base fixée.

2. Hyperplans

Exemples 14:

■ Le plan vectoriel de \mathbb{R}^3 d'équation 2x+y-z=0 est un hyperplan de \mathbb{R}^3 , noyau de la forme linéaire non nulle $(x,y,z)\longmapsto 2x+y-z$.

2. Hyperplans

Exemples 14:

- Le plan vectoriel de \mathbb{R}^3 d'équation 2x+y-z=0 est un hyperplan de \mathbb{R}^3 , noyau de la forme linéaire non nulle $(x,y,z) \mapsto 2x+y-z$.
- L'ensemble $H = \{P \in \mathbb{R}_3[X] / P'(1) + P(0) = 0\}$ est un hyperplan de $\mathbb{R}_3[X]$, noyau de la forme linéaire non nulle $P \mapsto P'(1) + P(0)$.

On voit moins bien ici que H est décrit par une équation linéaire sur les coordonnées, mais si on introduit les coefficients a,b,c,d de

P: $P = aX^3 + bX^2 + cX + d$, H est décrit par l'équation 3a + 2b + c + d = 0.

2. Hyperplans

Exemples 14:

- Le plan vectoriel de \mathbb{R}^3 d'équation 2x+y-z=0 est un hyperplan de \mathbb{R}^3 , noyau de la forme linéaire non nulle $(x,y,z) \mapsto 2x+y-z$.
- L'ensemble $H = \{P \in \mathbb{R}_3[X] / P'(1) + P(0) = 0\}$ est un hyperplan de $\mathbb{R}_3[X]$, noyau de la forme linéaire non nulle $P \mapsto P'(1) + P(0)$.
 - On voit moins bien ici que H est décrit par une équation linéaire sur les coordonnées, mais si on introduit les coefficients a, b, c, d de P: $P = aX^3 + bX^2 + cX + d$. H est décrit par l'équation 3a + 2b + c + d = 0.
- L'ensemble $\{f \in \mathcal{C}^{\infty}(\mathbb{R},\mathbb{R}) / f'(0) = f(0)\}$ est un hyperplan de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$, noyau de la forme linéaire non nulle $f \mapsto f(0) f'(0)$. Ici, $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ est de dimension infinie.

2. Hyperplans

Théorème 15 (Caractérisation Géométrique des hyperplans):

Soient E un $\mathbb{K}\text{-espace}$ vectoriel et H une partie de E.

Les assertions suivantes sont équivalentes :

• H est un hyperplan de E.

56/90

2. Hyperplans

Théorème 15 (Caractérisation Géométrique des hyperplans) :

Soient E un K-espace vectoriel et H une partie de E.

Les assertions suivantes sont équivalentes :

- H est un hyperplan de E.
- 2 H est supplémentaire d'une droite de E.

2. Hyperplans

Théorème 15 (Caractérisation Géométrique des hyperplans):

Soient E un \mathbb{K} -espace vectoriel et H une partie de E.

Les assertions suivantes sont équivalentes :

- H est un hyperplan de E.
- 2 H est supplémentaire d'une droite de E.

Si E est de dimension finie $n \ge 1$, les hyperplans de E sont donc ses sous-espaces vectoriels de dimension n-1.

2. Hyperplans

Théorème 15 (Caractérisation géométrique des hyperplans) :

Soient E un K-espace vectoriel et H une partie de E.

Les assertions suivantes sont équivalentes :

- H est un hyperplan de E.
- 2 H est supplémentaire d'une droite de E.

Si E est de dimension finie $n \ge 1$, les hyperplans de E sont donc ses sous-espaces vectoriels de dimension n-1.

Exemples 15:

En dimension 3, les hyperplans sont des plans et en dimension 2, les hyperplans sont des droites.

2. Hyperplans

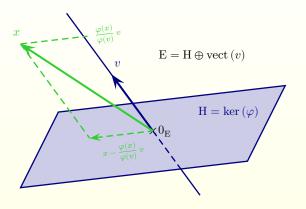


Figure 4 – \mathbb{R}^3 est engendré par une droite et un plan ne la contenant pas.

PTSI (F. PUCCI) Chapitre 27 57/90

2. Hyperplans

Exemples 16:

Pour tout $n \in \mathbb{N}$,

■ $\mathbb{K}_n[X]$ est donc un hyperplan de $\mathbb{K}_{n+1}[X]$.

2. Hyperplans

Exemples 16:

Pour tout $n \in \mathbb{N}$,

- $\blacksquare \ \mathbb{K}_n[\mathbf{X}]$ est donc un hyperplan de $\mathbb{K}_{n+1}[\mathbf{X}].$
- \blacksquare $\mathbb{K}^n \times \{0\}$ un hyperplan de \mathbb{K}^{n+1} , noyau de la $(n+1)^{\text{ème}}$ forme coordonnée.

2. Hyperplans

Exemples 16:

Pour tout $n \in \mathbb{N}$,

- $\blacksquare \ \mathbb{K}_n[\mathbf{X}]$ est donc un hyperplan de $\mathbb{K}_{n+1}[\mathbf{X}].$
- \blacksquare $\mathbb{K}^n \times \{0\}$ un hyperplan de \mathbb{K}^{n+1} , noyau de la $(n+1)^{\text{ème}}$ forme coordonnée.
- La trace est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$. L'ensemble des matrices de trace nulle est donc un hyperplan (de dimension n^2-1 dans ce cas) de $\mathcal{M}_n(\mathbb{R})$.

58 / 90

2. Hyperplans

Exemples 17:

■ L'ensemble $\{(x,y,z,t) \in \mathbb{R}^4 \ / \ 2x+y=z+t\}$ est un sous-espace vectoriel de \mathbb{R}^4 de dimension 4-1=3 en tant que noyau de la forme linéaire non nulle

$$(x,y,z,t)\longmapsto 2x+y-z-t.$$

2. Hyperplans

Exemples 17:

■ L'ensemble $\{(x,y,z,t) \in \mathbb{R}^4 / 2x + y = z + t\}$ est un sous-espace vectoriel de \mathbb{R}^4 de dimension 4-1=3 en tant que noyau de la forme linéaire non nulle

$$(x, y, z, t) \longmapsto 2x + y - z - t.$$

■ L'ensemble $\{P \in \mathbb{R}_4[X] / P(0) = P(1)\}$ est un sous-espace vectoriel de $\mathbb{R}_4[X]$ de dimension 5-1=4 en tant que noyau de la forme linéaire non nulle

$$P \mapsto P(1) - P(0)$$
.

2. Hyperplans

Exercice 12:

Soit H un hyperplan de E de dimension finie.

Montrer que, pour tout $a \in E \setminus H$, $E = H \oplus K.a$.

2. Hyperplans

Théorème 16 (Comparaison des équations d'un hyperplan) :

Soient E un \mathbb{K} -espace vectoriel, H un hyperplan de E et φ, ψ deux formes linéaires non nulles de E dont H est le noyau.

Alors $\psi = \lambda \varphi$ pour un certain $\lambda \in \mathbb{K}^*$:

$$\mathbf{H} = \ker \left(\varphi \right) = \ker \left(\psi \right) \implies \exists \, \lambda \in \mathbb{K}^*, \; \psi = \lambda \varphi.$$

2. Hyperplans

Théorème 16 (Comparaison des équations d'un hyperplan):

Soient E un \mathbb{K} -espace vectoriel, H un hyperplan de E et φ, ψ deux formes linéaires non nulles de E dont H est le noyau.

Alors $\psi = \lambda \varphi$ pour un certain $\lambda \in \mathbb{K}^*$:

$$H = \ker (\varphi) = \ker (\psi) \implies \exists \lambda \in \mathbb{K}^*, \ \psi = \lambda \varphi.$$

En résumé, tout hyperplan possède une et une seule « vraie » équation, toutes ses équations sont multiples les unes des autres.

Nous connaissions bien ce résultat en géométrie élémentaire, le plan d'équation x+y+2z=0 et le plan d'équation 2x+2y+4z=0 sont évidemment un seul et même plan, et ce plan n'a pas d'équation « vraiment » différente.

PTSI (F. PUCCI) Chapitre 27

2. Hyperplans

Exercice 13:

Soit $\alpha\in\mathbb{C}$. Montrer que $\{P\in\mathbb{C}[X]\,/\,P(\alpha)=0\}$ est un hyperplan de $\mathbb{C}[X]$ et en déterminer une base.

62/90

3. Interprétation géométrique d'un système d'équations linéaires homogène

Considérons un système d'équations linéaires homogène de n équations à p inconnues :

Pour tout $1\leqslant i\leqslant n,$ posons $\varphi_i(x_1,\ldots,x_n)=a_{i,1}x_1+a_{i,2}x_2+\ldots+a_{i,p}x_p.$

 φ_i est une forme linéaire non nulle sur $\mathbb{R}^p.$ Son noyau est donc un hyperplan $\mathcal{H}_i.$

L'ensemble \mathcal{S}_0 des solutions du système correspond ainsi à l'intersection $\bigcap_{i=1}^n \mathbf{H}_i$ de n hyperplans de \mathbb{R}^p .

PTSI (F. PUCCI) Chapitre 27

3. Interprétation géométrique d'un système d'équations linéaires homogène

De manière plus générale :

Théorème 17 (Intersections d'hyperplans):

Soient E un K-espace vectoriel de dimension finie non nulle n et $r \in [1; n]$.

3 L'intersection de r hyperplans de E est un sous-espace vectoriel de E de dimension AU MOINS n-r.

3. Interprétation géométrique d'un système d'équations linéaires homogène

De manière plus générale :

Théorème 17 (Intersections d'hyperplans):

Soient E un K-espace vectoriel de dimension finie non nulle n et $r \in [1; n]$.

- ullet L'intersection de r hyperplans de E est un sous-espace vectoriel de E de dimension AU MOINS n-r.
- ② Tout sous-espace vectoriel de E de dimension n-r est l'intersection d'exactement r hyperplans de E.

3. Interprétation géométrique d'un système d'équations linéaires homogène

De manière plus générale :

Théorème 17 (Intersections d'hyperplans):

Soient E un K-espace vectoriel de dimension finie non nulle n et $r \in [1; n]$.

- L'intersection de r hyperplans de E est un sous-espace vectoriel de E de dimension AU MOINS n-r.
- ② Tout sous-espace vectoriel de E de dimension n-r est l'intersection d'exactement r hyperplans de E.

Dans \mathbb{R}^3 , nous savons bien qu'une équation scalaire décrit un plan et que deux telles équations, pour peu qu'elles ne soient pas multiples l'une de l'autre, décrivent une droite.

L'idée générale du théorème ci-dessus, c'est que dans un système linéaire, chaque équation occasionne POTENTIELLEMENT la perte d'une dimension par rapport au nombre total d'inconnues.

Pourquoi potentiellement? Parce que certaines équations peuvent être redondantes et ne pas compter vraiment dans le système.

PTSI (F. PUCCI) Chapitre 27

3. Interprétation géométrique d'un système d'équations linéaires homogène

Par exemple, le système linéaire

$$\begin{cases} x+y-2z=0\\ 2x-y+z=0\\ 3x-z=0 \end{cases}$$

d'inconnue $(x,y,z)\in\mathbb{R}^3$ décrit une droite de dimension $1\geqslant 3-3=0$ et non un point de \mathbb{R}^3 car la troisième équation n'est jamais que la somme des deux premières.

Le théorème s'applique.

- Isomorphismes en dimension finie
- 2 Définition d'une application linéaire
- 3 Rang d'une application linéaire
- 4 Formes linéaires et hyperplans
- **5** Endomorphismes remarquables : projecteurs et symétries
 - Homothéties
 - Projecteurs
 - Symétries

Nous allons retrouver dans ce paragraphe un premier lien vraiment concret entre algèbre linéaire et géométrie, en étudiant quelques types d'applications linéaires bien particulières, que vous connaissez déjà en géométrie plane depuis longtemps.

PTSI (F. PUCCI) Chapitre 27

1. Homothéties

Définition 4:

Soient E un espace vectoriel réel et $\lambda \in \mathbb{R}$.

On appelle homothétie de rapport λ l'endomorphisme de E de la forme $\lambda \mathrm{I} d_{\mathrm{E}}$:

$$h: E \longrightarrow E$$

$$x \longmapsto \lambda_{\cdot E} x$$

1. Homothéties

Définition 4:

Soient E un espace vectoriel réel et $\lambda \in \mathbb{R}$.

On appelle homothétie de rapport λ l'endomorphisme de E de la forme $\lambda \mathrm{I} d_{\mathrm{E}}$:

$$h: \ \mathbf{E} \longrightarrow \ \mathbf{E}$$
$$x \longmapsto \lambda_{\cdot \mathbf{E}} x$$

Cela correspond bien à la notion usuelle d'homothétie de rapport λ , toujours centrée en l'origine quand on travaille dans un espace vectoriel.

1. Homothéties

Définition 4:

Soient E un espace vectoriel réel et $\lambda \in \mathbb{R}$.

On appelle homothétie de rapport λ l'endomorphisme de E de la forme $\lambda \mathrm{I} d_{\mathrm{E}}$:

$$\begin{array}{cccc} h: & \to & \to & \to & \\ & x & \longmapsto & \lambda._{\to}x \end{array}.$$

Proposition 18

Si $\lambda \neq 0$, l'homothétie de rapport λ est un automorphisme de E dont l'automorphisme réciproque est l'homothétie de rapport $\frac{1}{\lambda}$.

1. Homothéties

Définition 4:

Soient E un espace vectoriel réel et $\lambda \in \mathbb{R}$.

On appelle homothétie de rapport λ l'endomorphisme de E de la forme $\lambda \mathrm{I} d_{\mathrm{E}}$:

$$\begin{array}{cccc} h: & \to & \to & \to & \\ & x & \longmapsto & \lambda._{\to}x \end{array} .$$

Proposition 18

Si $\lambda \neq 0$, l'homothétie de rapport λ est un automorphisme de E dont l'automorphisme réciproque est l'homothétie de rapport $\frac{1}{\lambda}$.

Remarque: En tant que multiples de l'identité, les homothéties commutent avec tous les autres endomorphismes de E. On peut d'ailleurs prouver que ce sont les seules applications linéaires dans ce cas.

1. Homothéties

Exercice 14:

Soit E un espace vectoriel non nul. Soit f un endomorphisme de E tel que pour tout vecteur x de E la famille (x,f(x)) soit liée. Montrer que f est une homothétie.

2. Projecteurs

Définition 5:

Soient \mathcal{E}_1 et \mathcal{E}_2 deux sous-espaces vectoriels supplémentaires d'un $\mathbb{K}\text{-ev}$ E.

On appelle projection (ou projecteur) sur E_1 parallèlement à E_2 l'unique application $p: E \longmapsto E_1$ telle que :

$$\forall\,x_1\in\mathcal{E}_1,\;p(x_1)=x_1\quad\text{ et }\quad\forall\,x_2\in\mathcal{E}_2,\;p(x_2)=0_\mathcal{E}.$$

Ainsi,

$$p: \ \mathbf{E} = \mathbf{E}_1 \oplus \mathbf{E}_2 \quad \longrightarrow \quad \mathbf{E}_1$$

$$x = x_1 + x_2 \quad \longmapsto \quad x_1.$$

2. Projecteurs

Définition 5:

Soient \mathcal{E}_1 et \mathcal{E}_2 deux sous-espaces vectoriels supplémentaires d'un $\mathbb{K}\text{-ev}$ E.

On appelle projection (ou projecteur) sur E_1 parallèlement à E_2 l'unique application $p: E \longmapsto E_1$ telle que :

$$\forall\,x_1\in\mathcal{E}_1,\;p(x_1)=x_1\quad\text{ et }\quad\forall\,x_2\in\mathcal{E}_2,\;p(x_2)=0_\mathcal{E}.$$

Ainsi,

$$p: \ \mathbf{E} = \mathbf{E}_1 \oplus \mathbf{E}_2 \quad \longrightarrow \quad \mathbf{E}_1$$
$$x = x_1 + x_2 \quad \longmapsto \quad x_1.$$

Vocabulaire : E₁ est appelé sa base et E₂ sa direction.

PTSI (F. PUCCI)

2. Projecteurs

Définition 5:

Soient \mathcal{E}_1 et \mathcal{E}_2 deux sous-espaces vectoriels supplémentaires d'un $\mathbb{K}\text{-ev}$ E.

On appelle projection (ou projecteur) sur E_1 parallèlement à E_2 l'unique application $p:E\longmapsto E_1$ telle que :

$$\forall\,x_1\in\mathcal{E}_1,\;p(x_1)=x_1\quad\text{ et }\quad\forall\,x_2\in\mathcal{E}_2,\;p(x_2)=0_\mathcal{E}.$$

Ainsi,

$$p: \ \mathbf{E} = \mathbf{E}_1 \oplus \mathbf{E}_2 \quad \longrightarrow \quad \mathbf{E}_1$$
$$x = x_1 + x_2 \quad \longmapsto \quad x_1.$$

Vocabulaire : E₁ est appelé sa base et E₂ sa direction.

On dira qu'une application p est un projecteur s'il existe deux sous-espaces supplémentaires E_1 et E_2 de E tels que p soit la projection sur E_1 parallèlement à E_2 .

Notons qu'il est indispensable de préciser l'espace E_2 parallèlement auquel oprojette. Il n'y a pour l'instant aucune notion de projection orthogonale dans un espace vectoriel.

2. Projecteurs

Remarque : L'existence et l'unicité d'une telle application linéaire p est donnée par la proposition (9) avec

PTSI (F. PUCCI)

2. Projecteurs

Exemple 18:

Dans $\vec{\mathcal{E}}_2$, on considère deux vecteurs $\overrightarrow{e_1}$ et $\overrightarrow{e_2}$ non colinéaires.

Pour tout vecteur $\vec{x} \in \vec{\mathcal{E}}_2$, il existe un unique couple de réels $(\alpha; \beta) \in \mathbb{R}^2$ tel que $\vec{x} = \alpha \overrightarrow{e_1} + \beta \overrightarrow{e_2}$ i.e. $\vec{\mathcal{E}}_2 = \mathbb{R} \overrightarrow{e_1} \oplus \mathbb{R} \overrightarrow{e_2} = D_1 \oplus D_2$.

On peut alors définir la projection p sur \mathcal{D}_1 parallèlement à \mathcal{D}_2 :

$$\begin{array}{cccc} p: & \vec{\mathcal{E}}_2 = \mathbf{D}_1 \oplus \mathbf{D}_2 & \longrightarrow & \mathbf{E}_1 \\ \\ & \vec{x} = \overrightarrow{x_1} + \overrightarrow{x_2} & \longmapsto & \overrightarrow{x_1}. \end{array}$$

2. Projecteurs



Figure 5 – Exemple de projecteur dans \mathbb{R}^2 .

PTSI (F. PUCCI) Chapitre 27 73/90

2. Projecteurs

Proposition 19 (Propriétés des projecteurs)

Soient $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2$ et p la projection sur \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$

2. Projecteurs

Proposition 19 (Propriétés des projecteurs)

Soient $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2$ et p la projection sur \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$

- $\bullet p \in \mathcal{L}(\mathbf{E})$

2. Projecteurs

Proposition 19 (Propriétés des projecteurs)

Soient $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2$ et p la projection sur \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$

- **3** $E_2 = \ker(p)$.

2. Projecteurs

Proposition 19 (Propriétés des projecteurs)

Soient $\mathbf{E}=\mathbf{E}_1\oplus\mathbf{E}_2$ et p la projection sur \mathbf{E}_1 parallèlement à $\mathbf{E}_2.$

- **3** $E_2 = \ker(p)$.
- $\bullet~{\rm E_1=Im}\,(p)={\rm ker}\,(p-{\rm I}d_{\rm E})~i.e.~{\rm E_1}$ est l'ensemble des vecteurs invariants par p.

2. Projecteurs

Proposition 19 (Propriétés des projecteurs)

Soient $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2$ et p la projection sur \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$

Alors:

- **3** $E_2 = \ker(p)$.
- $\bullet~{\rm E_1=Im}\,(p)={\rm ker}\,(p-{\rm I}d_{\rm E})~i.e.~{\rm E_1}$ est l'ensemble des vecteurs invariants par p.

En particulier, si p est un projecteur alors $\ker(p) \oplus \operatorname{Im}(p) = \mathbf{E}$.

PTSI (F. PUCCI) Cha

2. Projecteurs

Théorème 20 (Caractérisation des projecteurs):

Soit $p \in \mathcal{L}(E)$.

$$p$$
 est un projecteur $\iff p \circ p = p$.

Plus précisément, E = Im $(p) \oplus \ker(p)$ et p est le projecteur sur Im (p) parallèlement à $\ker(p)$.

2. Projecteurs

Théorème 20 (Caractérisation des projecteurs):

Soit $p \in \mathcal{L}(\mathbf{E})$.

$$p$$
 est un projecteur $\iff p \circ p = p$.

Plus précisément, $E = Im(p) \oplus ker(p)$ et p est le projecteur sur Im(p) parallèlement à ker(p).

ATTENTION

 $x \longmapsto |x|$ est idem-potente mais n'est pas une projection. La linéarité est importante!

2. Projecteurs

Théorème 20 (Caractérisation des projecteurs):

Soit $p \in \mathcal{L}(E)$.

$$p$$
 est un projecteur $\iff p \circ p = p$.

Plus précisément, $\mathbf{E} = \mathrm{Im}\,(p) \oplus \ker(p)$ et p est le projecteur sur $\mathrm{Im}\,(p)$ parallèlement à $\ker(p)$.

ATTENTION

 $x \longmapsto |x|$ est idem-potente mais n'est pas une projection. La linéarité est importante !

Ce théorème signifie que l'étude des applications linéaires idem-potentes est achevée.

PTSI (F. PUCCI) Chapitre 27

2. Projecteurs

Méthode 3

Soit $p \in \mathcal{L}(\mathbf{E})$ tel que $p \circ p = p$ alors on peut affirmer :

 \bullet p est un projecteur.

2. Projecteurs

Méthode 3

Soit $p \in \mathcal{L}(\mathbf{E})$ tel que $p \circ p = p$ alors on peut affirmer :

- \bullet p est un projecteur.
- ${\bf 2}\,$ E se décompose en deux sous-espaces supplémentaires qui s'avèrent être $\ker\left(p\right)$ et $\mathrm{Im}\left(p\right)$:

$$\mathbf{E}=\ker\left(p\right)\oplus\mathrm{Im}\left(p\right).$$

2. Projecteurs

Méthode 3

Soit $p \in \mathcal{L}(\mathbf{E})$ tel que $p \circ p = p$ alors on peut affirmer :

- \bullet p est un projecteur.
- ${\bf 2}\,$ E se décompose en deux sous-espaces supplémentaires qui s'avèrent être $\ker\left(p\right)$ et $\mathrm{Im}\left(p\right)$:

$$E = \ker(p) \oplus \operatorname{Im}(p).$$

 \bullet p est LA projection sur Im (p) parallèlement à ker (p).

2. Projecteurs

Méthode 3

Soit $p \in \mathcal{L}(\mathbf{E})$ tel que $p \circ p = p$ alors on peut affirmer :

- p est un projecteur.
- ${\bf 2}\,$ E se décompose en deux sous-espaces supplémentaires qui s'avèrent être $\ker\left(p\right)$ et $\mathrm{Im}\left(p\right)$:

$$\mathbf{E}=\ker\left(p\right)\oplus\mathrm{Im}\left(p\right).$$

 $\ \, \textbf{0} \,\, p$ est LA projection sur ${\rm Im}\,(p)$ parallèlement à ${\rm ker}\,(p).$

À retenir

Dans le cas d'un projecteur p, retenez bien cette décomposition commode :

$$\forall\, u \in \mathcal{E}, \ u = \underbrace{p(u)}_{\in \mathcal{I}\mathbf{m}(p)} + \underbrace{u - p(u)}_{\in \ker(p)}.$$

PTSI (F. PUCCI) Chapitre 27

2. Projecteurs

Exemple 19:

Considérons l'application du plan $p: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto \left(\frac{x+y}{2},\frac{x+y}{2}\right).$

• $p \in \mathcal{L}(\mathbb{R}^2)$.

PTSI (F. PUCCI)

2. Projecteurs

Exemple 19:

Considérons l'application du plan $p: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto \left(\frac{x+y}{2},\frac{x+y}{2}\right).$

- $p \in \mathcal{L}(\mathbb{R}^2)$.
- $p\Big(p((x,y))\Big) = p\left(\left(\frac{x+y}{2}, \frac{x+y}{2}\right)\right) = \left(\frac{x+y}{2}, \frac{x+y}{2}\right) = p((x,y)).$ Donc $p \circ p = p$.

PTSI (F. PUCCI)

2. Projecteurs

Exemple 19:

Considérons l'application du plan $p: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto \left(\frac{x+y}{2},\frac{x+y}{2}\right).$

- $p \in \mathcal{L}(\mathbb{R}^2)$.
- $\begin{array}{l} \bullet \ \ p\Big(p\big((x,y)\big)\Big) = p\left(\left(\frac{x+y}{2},\frac{x+y}{2}\right)\right) = \left(\frac{x+y}{2},\frac{x+y}{2}\right) = p\big((x,y)\big). \\ \text{Donc } p \circ p = p. \end{array}$

On en déduit que p est un projecteur.

PTSI (F. PUCCI)

2. Projecteurs

Exemple 19:

Considérons l'application du plan $p: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto \left(\frac{x+y}{2},\frac{x+y}{2}\right).$

- $p \in \mathcal{L}(\mathbb{R}^2)$.
- $\begin{array}{l} \bullet \ \ p\Big(p\big((x,y)\big)\Big) = p\left(\left(\frac{x+y}{2},\frac{x+y}{2}\right)\right) = \left(\frac{x+y}{2},\frac{x+y}{2}\right) = p\big((x,y)\big). \\ \text{Donc } p \circ p = p. \end{array}$

On en déduit que p est un projecteur.

De plus:

$$\begin{split} (x,y) \in \ker{(p)} &\iff \left(\frac{x+y}{2}, \frac{x+y}{2}\right) = (0,0) \iff y = -x \iff (x,y) = (x,-x) \\ &\iff (x,y) \in \mathbb{R}(1,-1). \end{split}$$

$$(x,y) \in \mathrm{Im}\,(p) \iff x = y \iff (x,y) = (x,x) \iff (x,y) \in \mathbb{R}(1,1).$$

PTSI (F. PUCCI) Chapitre 27

2. Projecteurs

Exemple 19:

Considérons l'application du plan $p: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto \left(\frac{x+y}{2},\frac{x+y}{2}\right).$

- $p \in \mathcal{L}(\mathbb{R}^2)$.
- $\begin{array}{l} \bullet \ \ p\Big(p\big((x,y)\big)\Big) = p\left(\left(\frac{x+y}{2},\frac{x+y}{2}\right)\right) = \left(\frac{x+y}{2},\frac{x+y}{2}\right) = p\big((x,y)\big). \\ \text{Donc } p \circ p = p. \end{array}$

On en déduit que p est un projecteur.

De plus:

$$\begin{split} (x,y) \in \ker{(p)} &\iff \left(\frac{x+y}{2}, \frac{x+y}{2}\right) = (0,0) \iff y = -x \iff (x,y) = (x,-x) \\ &\iff (x,y) \in \mathbb{R}(1,-1). \end{split}$$

$$(x,y) \in \mathrm{Im}\,(p) \iff x = y \iff (x,y) = (x,x) \iff (x,y) \in \mathbb{R}(1,1).$$

Donc, p est le projecteur sur $\mathbb{R}(1,1)$ parallèlement à $\mathbb{R}(1,-1)$.

PTSI (F. PUCCI) Chapitre 27

2. Projecteurs

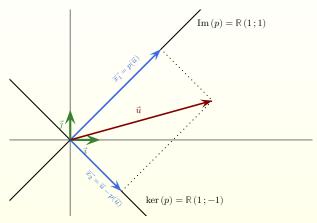


Figure 6 – Projection sur la droite y = x parallèlement à y = -x dans \mathbb{R}^2 .

PTSI (F. PUCCI) Chapitre 27 78/90

2. Projecteurs

Exercice 15:

Identifier l'endomorphisme $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} -9x + 6y \\ -15x + 10y \\ -5x + 3y + z \end{pmatrix}$$

2. Projecteurs

Définition 6:

Soient \mathcal{E}_1 et \mathcal{E}_2 deux sous-espaces vectoriels supplémentaires de $\mathcal{E}.$

Soit:

 $\blacksquare \ p$ la projection sur \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$

2. Projecteurs

Définition 6:

Soient \mathcal{E}_1 et \mathcal{E}_2 deux sous-espaces vectoriels supplémentaires de $\mathcal{E}.$

Soit:

- \blacksquare p la projection sur \mathbf{E}_1 parallèlement à \mathbf{E}_2 .
- $\blacksquare \ q$ la projection sur \mathcal{E}_2 parallèlement à $\mathcal{E}_1.$

2. Projecteurs

Définition 6:

Soient \mathcal{E}_1 et \mathcal{E}_2 deux sous-espaces vectoriels supplémentaires de $\mathcal{E}.$

Soit:

- $\blacksquare \ p$ la projection sur \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$
- $\blacksquare \ q$ la projection sur \mathcal{E}_2 parallèlement à $\mathcal{E}_1.$

On dit que p et q sont des projecteurs associés.

2. Projecteurs

Définition 6:

Soient E_1 et E_2 deux sous-espaces vectoriels supplémentaires de E.

Soit:

- $\blacksquare \ p$ la projection sur \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$
- $\blacksquare \ q$ la projection sur \mathcal{E}_2 parallèlement à $\mathcal{E}_1.$

On dit que p et q sont des projecteurs associés.

Proposition 21:

Si p et q sont deux projecteurs associés, alors :

2. Projecteurs

Définition 6:

Soient E_1 et E_2 deux sous-espaces vectoriels supplémentaires de E.

Soit:

- $\blacksquare \ p$ la projection sur \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$
- $\blacksquare \ q$ la projection sur \mathcal{E}_2 parallèlement à $\mathcal{E}_1.$

On dit que p et q sont des projecteurs associés.

Proposition 21:

Si p et q sont deux projecteurs associés, alors :

2. Projecteurs

Définition 6:

Soient E_1 et E_2 deux sous-espaces vectoriels supplémentaires de E.

Soit:

- $\blacksquare \ p$ la projection sur \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$
- $\blacksquare \ q$ la projection sur \mathcal{E}_2 parallèlement à $\mathcal{E}_1.$

On dit que p et q sont des projecteurs associés.

Proposition 21:

Si p et q sont deux projecteurs associés, alors :

2. Projecteurs

Exercice 16:

Soit E un \mathbb{K} -ev et p, q deux projecteurs de E.

 $\bullet \text{ Démontrer que } p \circ q = p \iff \ker(q) \subset \ker(p).$

2. Projecteurs

Exercice 16:

Soit E un \mathbb{K} -ev et p,q deux projecteurs de E.

- **1** Démontrer que $p \circ q = p \iff \ker(q) \subset \ker(p)$.
- **2** Démontrer que $p \circ q = q \iff \operatorname{Im}(q) \subset \operatorname{Im}(p)$.

3. Symétries

Définition 7:

Soient E_1 et E_2 deux sous-espaces vectoriels supplémentaires d'un \mathbb{K} -ev E et p le projecteur sur E_1 parallèlement à E_2

On appelle symétrie par rapport à ${\rm E}_1$ parallèlement à ${\rm E}_2$ l'application $s=2p-{\rm Id}_{\rm E}.$

$$\forall\,x=x_1+x_2\in \mathbf{E}\ \mathrm{où}\ (x_1\,;x_2)\in \mathbf{E}_1\times \mathbf{E}_2,\quad s(x)=x_1-x_2.$$

3. Symétries

Définition 7:

Soient E_1 et E_2 deux sous-espaces vectoriels supplémentaires d'un $\mathbb{K}\text{-ev}$ E et p le projecteur sur E_1 parallèlement à E_2

On appelle symétrie par rapport à ${\rm E}_1$ parallèlement à ${\rm E}_2$ l'application $s=2p-{\rm I} d_{\rm E}.$

$$\forall\,x=x_1+x_2\in \mathbf{E}\ \mathrm{où}\ (x_1\,;x_2)\in \mathbf{E}_1\times \mathbf{E}_2,\quad s(x)=x_1-x_2.$$

Ainsi,

3. Symétries

Définition 7:

Soient $\mathcal E_1$ et $\mathcal E_2$ deux sous-espaces vectoriels supplémentaires d'un $\mathbb K\text{-ev}$ E et p le projecteur sur $\mathcal E_1$ parallèlement à $\mathcal E_2$

On appelle symétrie par rapport à ${\rm E}_1$ parallèlement à ${\rm E}_2$ l'application $s=2p-{\rm I} d_{\rm E}.$

$$\forall\,x=x_1+x_2\in \mathbf{E}\ \mathrm{où}\ (x_1\,;x_2)\in \mathbf{E}_1\times \mathbf{E}_2,\quad s(x)=x_1-x_2.$$

Ainsi,

$$s: \ \mathbf{E} = \mathbf{E}_1 \oplus \mathbf{E}_2 \quad \longrightarrow \quad \mathbf{E}$$
$$x = x_1 + x_2 \quad \longmapsto \quad x_1 - x_2.$$

Vocabulaire : E₁ est appelé sa base et E₂ sa direction.

PTSI (F. PUCCI)

3. Symétries

Définition 7:

Soient E_1 et E_2 deux sous-espaces vectoriels supplémentaires d'un $\mathbb{K}\text{-ev}$ E et p le projecteur sur E_1 parallèlement à E_2

On appelle symétrie par rapport à ${\bf E}_1$ parallèlement à ${\bf E}_2$ l'application $s=2p-{\bf I}d_{\bf E}.$

$$\forall\, x=x_1+x_2\in \mathbf{E}\ \mathrm{où}\ (x_1\,;x_2)\in \mathbf{E}_1\times \mathbf{E}_2,\quad s(x)=x_1-x_2.$$

Ainsi,

Vocabulaire : E₁ est appelé sa base et E₂ sa direction.

Remarque : On a aussi s=p-q où p et q sont les projecteurs associés à la somme directe $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2.$

3. Symétries

Exemple 20:

Dans $\vec{\mathcal{E}}_2$, on considère deux vecteurs $\overrightarrow{e_1}$ et $\overrightarrow{e_2}$ non colinéaires.

Pour tout vecteur $\vec{x} \in \vec{\mathcal{E}}_2$, il existe un unique couple de réels $(\alpha; \beta) \in \mathbb{R}^2$ tel que $\vec{x} = \alpha \overrightarrow{e_1} + \beta \overrightarrow{e_2}$ i.e. $\vec{\mathcal{E}}_2 = \mathbb{R} \overrightarrow{e_1} \oplus \mathbb{R} \overrightarrow{e_2} = D_1 \oplus D_2$.

On peut alors définir la symétrie s par rapport à \mathcal{D}_1 parallèlement à \mathcal{D}_2 :

$$\begin{split} s: & \ \vec{\mathcal{E}}_2 = \mathbf{D}_1 \oplus \mathbf{D}_2 & \longrightarrow & \mathbf{E}_1 \\ & \ \vec{x} = \overrightarrow{x_1} + \overrightarrow{x_2} & \longmapsto & \ \overrightarrow{x_1} - \overrightarrow{x_2}. \end{split}$$

3. Symétries

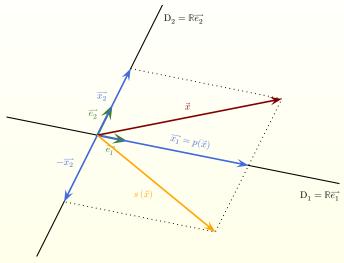


Figure 7 – Exemple de symétrie dans \mathbb{R}^2 .

84/90

PTSI (F. PUCCI) Chapitre 27

3. Symétries

Proposition 22 (Propriétés des symétries)

Soient $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2$ et s la symétrie par rapport à \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$

3. Symétries

Proposition 22 (Propriétés des symétries)

Soient $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2$ et s la symétrie par rapport à \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$

- \bullet $s \in \mathcal{L}(\mathbf{E})$
- $\textbf{@} \ s \circ s = \mathrm{I} d_{\mathrm{E}} \quad i.e. \quad s \text{ est un automorphisme involutif de E} \qquad \mathrm{et} \qquad s^{-1} = s.$

3. Symétries

Proposition 22 (Propriétés des symétries):

Soient $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2$ et s la symétrie par rapport à \mathcal{E}_1 parallèlement à $\mathcal{E}_2.$

- $\mbox{\bf @} \ s \circ s = \mathrm{I} d_{\mathrm{E}} \quad i.e. \quad s \ \mathrm{est \ un \ automorphisme \ involutif \ de \ E} \qquad \mathrm{et} \qquad s^{-1} = s.$
- $\ \, \mathbf{ \odot} \,\, \mathbf{ E}_1 = \ker \left(s \mathbf{ I} d_{\mathbf{ E}} \right) \,\, i.e. \,\, \mathbf{ E}_1$ est l'ensemble des vecteurs invariants par s.

3. Symétries

Proposition 22 (Propriétés des symétries)

Soient $E = E_1 \oplus E_2$ et s la symétrie par rapport à E_1 parallèlement à E_2 .

- $\circ s \circ s = \mathrm{Id}_{\mathrm{E}}$ i.e. s est un automorphisme involutif de E et $s^{-1} = s$.
- $\ \, \mathbf{\Theta} \, \, \, \mathbf{E}_1 = \ker \left(s \mathbf{I} d_{\mathbf{E}} \right) \, i.e. \, \, \mathbf{E}_1$ est l'ensemble des vecteurs invariants par s.
- $\bullet \ \, {\rm E}_2 = \ker{(s+{\rm I}d_{\rm E})}$ i.e. ${\rm E}_2$ est l'ensemble des vecteurs changés en leur opposé par s.

3. Symétries

Proposition 22 (Propriétés des symétries) :

Soient $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2$ et s la symétrie par rapport à \mathcal{E}_1 parallèlement à \mathcal{E}_2 .

Alors:

- **2** $s \circ s = \mathrm{Id}_{\mathrm{E}}$ *i.e.* s est un automorphisme involutif de E et $s^{-1} = s$.
- 3 $E_1 = \ker(s Id_E)$ i.e. E_1 est l'ensemble des vecteurs invariants par s.
- $\bullet \ \, {\rm E}_2 = \ker{(s+{\rm I}d_{\rm E})} \,\, i.e. \,\, {\rm E}_2$ est l'ensemble des vecteurs changés en leur opposé par s.

En particulier, si s est une symétrie alors $\ker{(s-\mathrm{I}d_{\mathrm{E}})} \oplus \ker{(s+\mathrm{I}d_{\mathrm{E}})} = \mathrm{E}.$

PTSI (F. PUCCI) Chapitre 27

3. Symétries

Proposition 22 (Propriétés des symétries):

Soient $\mathcal{E}=\mathcal{E}_1\oplus\mathcal{E}_2$ et s la symétrie par rapport à \mathcal{E}_1 parallèlement à \mathcal{E}_2 .

Alors:

- $\bullet \quad s \in \mathcal{L}(\mathbf{E})$
- $oldsymbol{\circ} s \circ s = \mathrm{I} d_{\mathrm{E}} \quad i.e. \quad s \text{ est un automorphisme involutif de E} \qquad \mathrm{et} \qquad s^{-1} = s.$
- $\ \, \mathbf{\Theta} \, \, \, \mathbf{E}_1 = \ker \left(s \mathbf{I} d_{\mathbf{E}} \right) \, i.e. \, \, \mathbf{E}_1$ est l'ensemble des vecteurs invariants par s.
- $\bullet \ \, {\rm E}_2 = \ker{(s+{\rm I}d_{\rm E})} \,\, i.e. \,\, {\rm E}_2$ est l'ensemble des vecteurs changés en leur opposé par s.

En particulier, si s est une symétrie alors $\ker(s-\mathrm{I}d_{\mathrm{E}}) \oplus \ker(s+\mathrm{I}d_{\mathrm{E}}) = \mathrm{E}$.

Ces conditions signifient simplement que ce par rapport à quoi on symétrise ${\bf E}_1=\ker{(s-{\bf I}d_{\rm E})}$ est laissé fixe par s, et ce parallèlement à quoi on symétrise ${\bf E}_2=\ker{(s+{\bf I}d_{\rm E})}$ est envoyé sur son opposé.

PTSI (F. PUCCI) Chapitre 27

3. Symétries

Théorème 23 (Caractérisation des symétries):

Soit $s \in \mathcal{L}(\mathbf{E})$.

$$s$$
 est une symétrie $\iff s \circ s = \mathrm{Id}_{\mathrm{E}}$.

Plus précisément, $\mathbf{E} = \ker{(s - \mathrm{I}d_{\mathrm{E}})} \oplus \ker{(s + \mathrm{I}d_{\mathrm{E}})}$ et s est la symétrie par rapport à $\ker{(s - \mathrm{I}d_{\mathrm{E}})}$ parallèlement à $\ker{(s + \mathrm{I}d_{\mathrm{E}})}$.

3. Symétries

Théorème 23 (Caractérisation des symétries):

Soit $s \in \mathcal{L}(E)$.

s est une symétrie $\iff s \circ s = \mathrm{Id}_{\mathrm{E}}$.

Plus précisément, $\mathbf{E} = \ker{(s - \mathrm{I}d_{\mathrm{E}})} \oplus \ker{(s + \mathrm{I}d_{\mathrm{E}})}$ et s est la symétrie par rapport à ker $(s - Id_E)$ parallèlement à ker $(s + Id_E)$.

ATTENTION $x \mapsto \frac{1}{x}$ est involutive mais n'est pas une symétrie. La linéarité est importante!

3. Symétries

Théorème 23 (Caractérisation des symétries):

Soit $s \in \mathcal{L}(E)$.

$$s$$
 est une symétrie $\iff s \circ s = \mathrm{Id}_{\mathrm{E}}$.

Plus précisément, $E = \ker(s - Id_E) \oplus \ker(s + Id_E)$ et s est la symétrie par rapport à ker $(s - Id_E)$ parallèlement à ker $(s + Id_E)$.

ATTENTION $x \longmapsto \frac{1}{x} \text{ est involutive mais n'est pas une symétrie. La linéarité est importante!}$

Comme pour les projecteurs, ce théorème signifie que l'étude des applications linéaires involutives est achevée.

PTSI (F. PUCCI) Chapitre 27

3. Symétries

Méthode 4 :

Soit $s \in \mathcal{L}(\mathbf{E})$ tel que $s \circ s = \mathrm{I} d_{\mathbf{E}}$ alors on peut affirmer :

 $oldsymbol{1}$ s est une symétrie.

3. Symétries

Méthode 4 :

Soit $s \in \mathcal{L}(\mathbf{E})$ tel que $s \circ s = \mathrm{Id}_{\mathbf{E}}$ alors on peut affirmer :

- $oldsymbol{0}$ s est une symétrie.
- ${\bf 2}$ E se décompose en deux sous-espaces supplémentaires qui s'avèrent être $\ker{(s-\mathrm{I}d_\mathrm{E})}$ et $\ker{(s+\mathrm{I}d_\mathrm{E})}$:

$$\mathbf{E} = \ker \left(s - \mathbf{I} d_{\mathbf{E}} \right) \oplus \ker \left(s + \mathbf{I} d_{\mathbf{E}} \right).$$

3. Symétries

Méthode 4:

Soit $s \in \mathcal{L}(\mathbf{E})$ tel que $s \circ s = \mathrm{I} d_{\mathbf{E}}$ alors on peut affirmer :

- $oldsymbol{0}$ s est une symétrie.
- ${\bf 2}$ E se décompose en deux sous-espaces supplémentaires qui s'avèrent être $\ker{(s-\mathrm{I}d_\mathrm{E})}$ et $\ker{(s+\mathrm{I}d_\mathrm{E})}$:

$$\mathbf{E} = \ker \left(s - \mathbf{I} d_{\mathbf{E}} \right) \oplus \ker \left(s + \mathbf{I} d_{\mathbf{E}} \right).$$

 $\mbox{\Large @}$ sest LA symétrie par rapport à $\ker{(s-\mathrm{I}d_\mathrm{E})}$ parallèlement à $\ker{(s+\mathrm{I}d_\mathrm{E})}.$

3. Symétries

Méthode 4:

Soit $s \in \mathcal{L}(\mathbf{E})$ tel que $s \circ s = \mathrm{I} d_{\mathbf{E}}$ alors on peut affirmer :

- $oldsymbol{0}$ s est une symétrie.
- ${\bf 2}$ E se décompose en deux sous-espaces supplémentaires qui s'avèrent être $\ker{(s-\mathrm{I}d_\mathrm{E})}$ et $\ker{(s+\mathrm{I}d_\mathrm{E})}$:

$$\mathbf{E} = \ker\left(s - \mathbf{I}d_{\mathbf{E}}\right) \oplus \ker\left(s + \mathbf{I}d_{\mathbf{E}}\right).$$

 $\mbox{\Large @}$ sest LA symétrie par rapport à $\ker{(s-\mathrm{I}d_{\mathrm{E}})}$ parallèlement à $\ker{(s+\mathrm{I}d_{\mathrm{E}})}.$

À retenir :

Dans le cas d'une symétrie s, retenez bien cette décomposition commode :

$$\forall\,u\in\mathcal{E},\;u=\underbrace{\frac{u+s(u)}{2}}_{\in\ker(s-\mathbf{I}d_{\mathcal{E}})}+\underbrace{\frac{u-s(u)}{2}}_{\in\ker(s+\mathbf{I}d_{\mathcal{E}})}\;.$$

PTSI (F. PUCCI) Chapitre 27

3. Symétries

Remarque : Comme pour les projecteurs, on pourrait envisager une décomposition de E de la forme $E = \ker{(s)} \oplus \operatorname{Im}{(s)}$ mais sachant que s est bijective, cette décomposition est, somme toute, triviale et inutile.

PTSI (F. PUCCI) Chapitre 27

3. Symétries

Exemple 21:

$$\begin{array}{cccc} \text{Soit S}: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & (x,y) & \longmapsto & (y,x) \end{array}$$

 $\quad \blacksquare \ S \in \mathcal{L}(\mathbb{R}^2).$

3. Symétries

Exemple 21:

$$\begin{array}{cccc} \text{Soit S}: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & (x,y) & \longmapsto & (y,x) \end{array}$$

- $\mathbf{S} \in \mathcal{L}(\mathbb{R}^2).$
- $\blacksquare \ \mathrm{S}(\mathrm{S}((x,y))) = \mathrm{S}((y,x)) = (x,y)$ d'où $\mathrm{S} \circ \mathrm{S} = \mathrm{I} d_{\mathrm{E}}.$

3. Symétries

Exemple 21:

$$\begin{array}{cccc} \text{Soit S}: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & (x,y) & \longmapsto & (y,x) \end{array}$$

- $\mathbf{S} \in \mathcal{L}(\mathbb{R}^2).$
- $\blacksquare \ \mathrm{S}(\mathrm{S}((x,y))) = \mathrm{S}((y,x)) = (x,y)$ d'où $\mathrm{S} \circ \mathrm{S} = \mathrm{I} d_{\mathrm{E}}.$

On en déduit que S est une symétrie.

3. Symétries

Exemple 21:

Soit S:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (y,x)$

- $\mathbf{S} \in \mathcal{L}(\mathbb{R}^2).$
- $\blacksquare \ \mathrm{S}(\mathrm{S}((x,y))) = \mathrm{S}((y,x)) = (x,y)$ d'où $\mathrm{S} \circ \mathrm{S} = \mathrm{I} d_{\mathrm{E}}.$

On en déduit que S est une symétrie.

De plus,

$$(x,y) \in \ker\left(\mathbf{S} - \mathbf{I}d_{\mathbf{E}}\right) \iff (y,x) = (x,y) \iff x = y \iff (x,y) = (x,x) \iff (x,y) \in \mathbb{R}(1,1).$$

$$\begin{split} (x,y) \in \ker \left(\mathbf{S} + \mathbf{I} d_{\mathbf{E}} \right) &\iff (y,x) = (-x,-y) \iff x = -y \iff (x,y) = (x,-x) \\ &\iff (x,y) \in \mathbb{R}(1,-1). \end{split}$$

PTSI (F. PUCCI)

3. Symétries

Exemple 21:

Soit S:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (y,x)$

- $\mathbf{S} \in \mathcal{L}(\mathbb{R}^2).$
- $\blacksquare \ \mathrm{S}(\mathrm{S}((x,y))) = \mathrm{S}((y,x)) = (x,y)$ d'où $\mathrm{S} \circ \mathrm{S} = \mathrm{I} d_{\mathrm{E}}.$

On en déduit que S est une symétrie.

De plus,

$$(x,y) \in \ker\left(\mathbf{S} - \mathbf{I} d_{\mathbf{E}}\right) \iff (y,x) = (x,y) \iff x = y \iff (x,y) = (x,x) \iff (x,y) \in \mathbb{R}(1,1).$$

$$\begin{split} (x,y) \in \ker \left(\mathbf{S} + \mathbf{I} d_{\mathbf{E}} \right) &\iff (y,x) = (-x,-y) \iff x = -y \iff (x,y) = (x,-x) \\ &\iff (x,y) \in \mathbb{R}(1,-1). \end{split}$$

Donc S est la symétrie par rapport à $\mathbb{R}(1,1)$ parallèlement à $\mathbb{R}(1,-1)$.

PTSI (F. PUCCI) Chapitre 27

89 / 90

3. Symétries

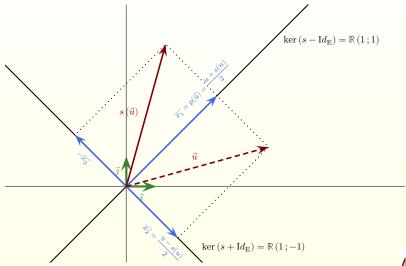


Figure 8 – Symétrie par rapport à la droite y=x et parallèlement à y=-x dans $\mathbb R^2$

PTSI (F. PUCCI) Chapitre 27 90/90

3. Symétries

Exercice 17:

Soit
$$E = \mathbb{K}^3$$
, $F = \{(x, y, z) / x + 2y + z = 0\}$ et $G = \text{vect}((1, 1, 1))$.

 $\bullet \ \ \text{Vérifier que } F \oplus G = E.$

3. Symétries

Exercice 17:

Soit $E = \mathbb{K}^3$, $F = \{(x, y, z) / x + 2y + z = 0\}$ et G = vect((1, 1, 1)).

- Vérifier que $F \oplus G = E$.
- **②** Soit s la symétrie de base F de direction G. Pour tout $(x, y, z) \in \mathbb{K}^3$, déterminer s((x, y, z)).

