Applications linéaires

Applications linéaires

I/ Généralités

Exercice 1 : Montrer qu'une application de \mathbb{R}^2 dans \mathbb{R}^2 qui à (x,y) associe (x',y') est linéaire si, et seulement si, il existe des réels $\alpha,\beta,\gamma,\delta$ tels que : $\begin{cases} x' = \alpha x + \beta y \\ y' = \gamma x + \delta y \end{cases}$.

Trouver de même l'écriture analytique d'une application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 ; de \mathbb{R}^3 dans \mathbb{R}^2 . Généraliser à une application linéaire de \mathbb{R}^p dans \mathbb{R}^n .

Exercice 2 : E et F sont des K-ev, et $f \in \mathcal{L}(E, F)$.

On définit $\phi: \to E \times F \longrightarrow E \times F$ $(x,y) \longmapsto (x,y-f(x))$

Montrer que ϕ est un automorphisme du $\mathbb{K}\text{-ev}$ produit $\mathbf{E}\times\mathbf{F}.$

Exercice 3 : 1. Vérifier qu'il existe une unique application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 vérifiant :

$$f((1,0,0)) = (1,1), \quad f((0,1,0)) = (0,1) \quad \text{et} \quad f((0,0,1)) = (-1,1).$$

Calculer f((3,-1,4)) et f((x,y,z)) en général.

- 2. Déterminer $\ker(f)$ et en fournir une base.
- 3. Donner un supplémentaire de ker (f) dans \mathbb{R}^3 et vérifier qu'il est isomorphe à Im (f).

Exercice 4 : Donner des exemples d'applications linéaires de \mathbb{R}^2 dans \mathbb{R}^2 vérifiant :

- $1. \ \ker(f) = \operatorname{Im}(f).$
- 2. $\ker(f)$ inclus strictement dans $\operatorname{Im}(f)$.
- 3. Im(f) inclus strict ement dans ker(f).

Exercice 5 : Déterminer une base de Im(f) avec

$$\begin{array}{cccc} f: & \mathbb{K}_n[\mathbf{X}] & \longrightarrow & \mathbb{K}_n[\mathbf{X}] \\ & \mathbf{P} & \longmapsto & \mathbf{P}'. \end{array}$$

Même question si f est définie sur $\mathbb{K}[X]$.

Exercice 6 : Montrer que les applications suivantes sont linéaires puis déterminer une base de leur noyau et une base de leur image. Sont-elles injectives ? surjectives ?

- 1. $(x, y, z) \mapsto (x + y + z, x + 3y + 2z, 3x + y + 2z)$.
- 2. $(x, y, z) \mapsto (2x y + z, 3x + y z, x 3y + 3z, 2x + 4y 4z)$.
- 3. P $\longmapsto X \left(P'(X+1) P'(1) \right)$ de $\mathbb{R}_3[X]$ dans lui-même.
- 4. M \longmapsto $\begin{pmatrix} 1 & 3 \\ 3 & 9 \end{pmatrix}$ M de $\mathscr{M}_2(\mathbb{R})$ dans lui-même.

Exercice 7: 1. Montrer que l'application $(x, y, z) \mapsto (x + 2y, 4x - y + z, 2x + 2y + 3z)$ est un automorphisme de \mathbb{R}^3 et déterminer sa réciproque.

2. Proposer un exemple d'isomorphisme de $\mathcal{M}_{n,p}(\mathbb{K})$ sur $\mathcal{L}(\mathbb{K}^p,\mathbb{K}^n)$.

Exercice 8 : On définit f, g de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$, par f(P) = P' et g(P) = XP.

- 1. Montrer que f et g sont des endomorphismes de $\mathbb{R}[X]$
- 2. Montrer que f est surjective et non injective.
- 3. Montrer que g est injective et non surjective.

Exercice 9 : On considère l'application f de $\mathbb{R}_n[X]$ dans \mathbb{R} , qui à tout polynôme P associe le réel $\int_0^1 P(t) dt$.

- 1. Montrer que f est une application linéaire.
- 2. Déterminer la dimension de son noyau, et une base de ce noyau.

II/ Rang d'une application linéaire _____

Exercice 10 : Dans \mathbb{R}^3 , discuter selon les valeurs du paramètre réel a la dimension de vect (u, v, w) avec u = (a, 1, 1), v = (1, a, 1) et w = (1, 1, a).

Exercice 11 : Soit f un endomorphisme non nul de \mathbb{R}^3 tel que $f^2 = 0$.

Déterminer le rang de f.

Exercice 12 : Soit E un \mathbb{K} -ev de dimension finie n.

- 1. Soient $f, g \in \mathcal{L}(E)$ tels que $f \circ g = 0$.
 - Montrer que $\operatorname{rg}(f) + \operatorname{rg}(g) \leq n$.

Applications linéaires

2. On ajoute l'hypothèse : $f + g \in \mathcal{G}l(E)$.

Montrer que rg(f) + rg(g) = n.

Exercice 13 : Soit $f: \mathbb{R}^4 \longmapsto \mathbb{R}^3$ définie par f((x,y,z,t)) = (x+y+z+2t,y-z+t,x-y+3z).

- 1. Démontrer que f est linéaire.
- 2. Démontrer que $\ker(f) = \text{vect } ((1, 1, 0, -1), (-3, 0, 1, 1)).$
- 3. $\mathcal{B} = (e_1, e_2, e_3, e_4)$ étant la base canonique de \mathbb{R}^4 , calculer le rang de $(f(e_1), f(e_2), f(e_3), f(e_4))$ et déterminer une base de Im (f).
- 4. Vérifier le théorème du rang.

Exercice 14 : Soit E un K-ev, et $f, g \in \mathcal{L}(E)$.

On suppose $E = \ker(f) + \ker(g) = \operatorname{Im}(f) + \operatorname{Im}(g)$.

Montrer que ces deux sommes sont directes.

Exercice 15 : Soit E un K-espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$.

À l'aide du théorème du rang, montrer que :

$$\ker(u) = \ker(u^2) \iff \operatorname{Im}(u) = \operatorname{Im}(u^2) \iff \operatorname{E} = \ker(u) \oplus \operatorname{Im}(u).$$

Exercice 16 : Soit
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 Montrer que $f \in \mathscr{G}l(\mathbb{R}^2)$. $(x;y) \longmapsto (x;2x-y)$

Exercice 17 : Dans le \mathbb{R} -ev \mathbb{C} , on considère $f \in \mathscr{L}_{\mathbb{R}}(\mathbb{C})$ par f(1) = 1 + i et f(i) = 3 - i.

Montrer que f est un automorphisme.

III/ Endomorphismes remarquables _____

Exercice 18 : Soit $p: \mathbb{R}^2 \to \mathbb{R}^2$ définie par p((x,y)) = (4x - 6y, 2x - 3y).

- 1. Montrer que p est linéaire.
- 2. Montrer que p est un projecteur.
- 3. Déterminer une base de $\ker(p)$ et de $\operatorname{Im}(p)$.

3

Exercice 19 : Soit f de \mathbb{R}^3 dans \mathbb{R}^3 définie par $f(x,y,z)=\left(\frac{x}{2},\frac{y}{2},0\right)$.

- 1. Montrer que f est linéaire. Est-elle injective?
- 2. Déterminer $\ker(f)$ et $\operatorname{Im}(f)$, puis montrer que $\mathbb{R}^3 = \ker(f) \oplus \operatorname{Im}(f)$.
- 3. f est-elle un projecteur?

Exercice 20 : Soit E un K-ev et $f \in \mathcal{L}(E)$.

Démontrer que $f^2 = \mathrm{I}d_{\mathrm{E}} \iff \frac{1}{2}(f + \mathrm{I}d_{\mathrm{E}})$ est un projecteur.

Exercice 21 : Soient E un \mathbb{K} -espace vectoriel et p et q deux projecteurs de E.

On suppose que p et q commutent. Montrer que $p \circ q$ est la projection de E sur $\operatorname{Im}(p) \cap \operatorname{Im}(q)$ de direction $\ker(p) + \ker(q)$.

Exercice 22 : Soient p et q deux projecteurs d'un \mathbb{C} -espace vectoriel E. Montrer que :

$$p+q$$
 projecteur $\iff p \circ q = q \circ p = 0 \iff \operatorname{Im}(p) \subset \ker(q)$ et $\operatorname{Im}(q) \subset \ker(p)$.

Dans le cas où p+q est un projecteur, déterminer $\ker(p+q)$ et $\operatorname{Im}(p+q)$.

Exercice 23 : On considère l'espace $\mathcal{F}(\mathbb{R};\mathbb{R})$ des applications de \mathbb{R} dans \mathbb{R} .

À tout élément $f \in \mathcal{F}(\mathbb{R}; \mathbb{R})$, on associe l'élément $T(f) \in \mathcal{F}(\mathbb{R}; \mathbb{R})$ défini par :

$$\forall x \in \mathbb{R}, \ \mathrm{T}(f)(x) = f(-x).$$

Montrer que T est une symétrie de $\mathcal{F}(\mathbb{R};\mathbb{R})$ et donner ses éléments caractéristiques.

Exercice 24 : Soit E un \mathbb{C} -ev et $f \in \mathcal{L}(E)$ tel que $f^2 = -\mathrm{I}d_E$.

On pose $F = \{x \in E; f(x) = ix\}$ et $G = \{x \in E; f(x) = -ix\}.$

- 1. Démontrer que $E = F \oplus G$.
- 2. Déterminer l'expression de f en fonction des projecteurs p et q associés à la somme directe précédente.

Lycée Jules Garnier