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Applications linéaires

I/ Généralités

Exercice 1 : Montrer qu’une application de ℝ2 dans ℝ2 qui à (𝑥, 𝑦) associe (𝑥′, 𝑦′) est linéaire si, et

seulement si, il existe des réels 𝛼, 𝛽, 𝛾, 𝛿 tels que :
⎧
⎨⎩

𝑥′ = 𝛼𝑥 + 𝛽𝑦
𝑦′ = 𝛾𝑥 + 𝛿𝑦

.

Trouver de même l’écriture analytique d’une application linéaire de ℝ2 dans ℝ3 ; de ℝ3 dans ℝ2.
Généraliser à une application linéaire de ℝ𝑝 dans ℝ𝑛.

Exercice 2 : E et F sont des 𝕂-ev, et 𝑓 ∈ L (E, F).

On définit 𝜙 ∶ E × F ⟶ E × F
(𝑥, 𝑦) ⟼ (𝑥, 𝑦 − 𝑓(𝑥))

.

Montrer que 𝜙 est un automorphisme du 𝕂-ev produit E × F.

Exercice 3 :
1. Vérifier qu’il existe une unique application linéaire de ℝ3 dans ℝ2 vérifiant :

𝑓((1, 0, 0)) = (1, 1), 𝑓((0, 1, 0)) = (0, 1) et 𝑓((0, 0, 1)) = (−1, 1).

Calculer 𝑓((3, −1, 4)) et 𝑓((𝑥, 𝑦, 𝑧)) en général.
2. Déterminer ker (𝑓) et en fournir une base.
3. Donner un supplémentaire de ker (𝑓) dans ℝ3 et vérifier qu’il est isomorphe à Im (𝑓).

Correction :
1. Si 𝑓 existe alors nécessairement, pour tout (𝑥, 𝑦, 𝑧) ∈ ℝ3 :

𝑓((𝑥, 𝑦, 𝑧)) = 𝑥𝑓((1, 0, 0))+𝑦𝑓((0, 1, 0))+𝑧𝑓((0, 0, 1)) = 𝑥(1, 1)+𝑦(0, 1)+𝑧(−1, 1) = (𝑥−𝑧, 𝑥+𝑦+𝑧).

On en déduit l’unicité de 𝑓.

Réciproquement, 𝑓 ainsi définie vérifie bien les trois égalités de l’énoncé. Il reste donc à se convaincre
que 𝑓 est linéaire.

Soient ((𝑥, 𝑦, 𝑧), (𝑥′, 𝑦′, 𝑧′)) ∈ (ℝ3)2 et (𝜆, 𝜇) ∈ ℝ2.

F. PUCCI Lycée Jules Garnier
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𝑓(𝜆(𝑥, 𝑦, 𝑧) + 𝜇(𝑥′, 𝑦′, 𝑧′)) = 𝑓((𝜆𝑥 + 𝜇𝑥′, 𝜆𝑦 + 𝜇𝑦′, 𝜆𝑧 + 𝜇𝑧′))
= ((𝜆𝑥 + 𝜇𝑥′) − (𝜆𝑧 + 𝜇𝑧′), (𝜆𝑥 + 𝜇𝑥′) + (𝜆𝑦 + 𝜇𝑦′) + (𝜆𝑧 + 𝜇𝑧′))
= 𝜆(𝑥 − 𝑧, 𝑥 + 𝑦 + 𝑧) + 𝜇(𝑥′ − 𝑧′, 𝑥′ + 𝑦′ + 𝑧′)
= 𝜆𝑓((𝑥, 𝑦, 𝑧)) + 𝜇𝑓((𝑥′, 𝑦′, 𝑧′)).

𝑓 est donc linéaire et convient. On en déduit l’existence de 𝑓.

On a alors 𝑓((3, −1, 4)) = (3 − 4, 3 − 1 + 4) = (−1, 6).

Remarque : La démonstration de la linéarité de 𝑓 ci-dessus est en fait superflue car l’ exercice (1)
qui est un résultat à connaître, donne l’expression générale d’une application linéaire de ℝ𝑛 dans ℝ𝑝.

2. Soit (𝑥, 𝑦, 𝑧) ∈ ℝ3.

(𝑥, 𝑦, 𝑧) ∈ ℝ3 ⇔ 𝑓((𝑥, 𝑦, 𝑧)) = (0, 0) ⇔ (𝑥 − 𝑧, 𝑥 + 𝑦 + 𝑧) = (0, 0) ⇔ { 𝑥 − 𝑧 = 0
𝑥 + 𝑦 + 𝑧 = 0 ⇔ { 𝑧 = 𝑥

𝑦 = −2𝑥

Donc, ker (𝑓) = {(𝑥, −2𝑥, 𝑥), 𝑥 ∈ ℝ} = {𝑥(1, −2, 1), 𝑥 ∈ ℝ} = vect ((1, −2, 1)). La famille
((1, −2, 1)) engendre ker (𝑓) et est libre.

Donc, la famille ((1, −2, 1)) est une base de ker (𝑓).
3. Détermination de Im (𝑓) : Soit (𝑥′, 𝑦′) ∈ ℝ2.

(𝑥′, 𝑦′) ∈ Im (𝑓) ⇔ ∃(𝑥, 𝑦, 𝑧) ∈ ℝ3/ 𝑓((𝑥, 𝑦, 𝑧)) = (𝑥′, 𝑦′)

⇔ ∃(𝑥, 𝑦, 𝑧) ∈ ℝ3/ { 𝑥 − 𝑧 = 𝑥′

𝑥 + 𝑦 + 𝑧 = 𝑦′ ⇔ ∃(𝑥, 𝑦, 𝑧) ∈ ℝ3/ { 𝑧 = 𝑥 − 𝑥′

𝑦 = −2𝑥 + 𝑥′ + 𝑦′

⇔ le système d’inconnue (𝑥, 𝑦, 𝑧) ∶ { 𝑧 = 𝑥 − 𝑥′

𝑦 = −2𝑥 + 𝑥′ + 𝑦′ a au moins une solution.

Or, le triplet (0, 𝑥′ + 𝑦′, −𝑥′) est solution et le système proposé admet une solution.

Par suite, tout (𝑥′, 𝑦′) de ℝ2 est dans Im (𝑓) et finalement, Im (𝑓) = ℝ2.
Détermination d’un supplémentaire de ker (𝑓) : Posons 𝑒1 = (1, −2, 1), 𝑒2 = (1, 0, 0) et

𝑒3 = (0, 1, 0) puis F = vect (𝑒2, 𝑒3) et montrons que ℝ3 = ker (𝑓) ⊕ F.

Tout d’abord, ker (𝑓) ∩ F = {0}. En effet :

(𝑥, 𝑦, 𝑧) ∈ ker (𝑓) ∩ F ⇔ ∃(𝑎, 𝑏, 𝑐) ∈ ℝ3/ (𝑥, 𝑦, 𝑧) = 𝑎𝑒1 = 𝑏𝑒2 + 𝑐𝑒3

⇔ ∃(𝑎, 𝑏, 𝑐) ∈ ℝ3/
⎧{
⎨{⎩

𝑥 = 𝑎 = 𝑏
𝑦 = −2𝑎 = 𝑐
𝑧 = 𝑎 = 0

⇔ 𝑥 = 𝑦 = 𝑧 = 0

Vérifions ensuite que ker (𝑓) + F = ℝ3.

(𝑥, 𝑦, 𝑧) ∈ ker (𝑓) + F ⇔ ∃(𝑎, 𝑏, 𝑐) ∈ ℝ3/ (𝑥, 𝑦, 𝑧) = 𝑎𝑒1 + 𝑏𝑒2 + 𝑐𝑒3

⇔ ∃(𝑎, 𝑏, 𝑐) ∈ ℝ3/
⎧{
⎨{⎩

𝑎 + 𝑏 = 𝑥
−2𝑎 + 𝑐 = 𝑦
𝑎 = 𝑧

⇔ ∃(𝑎, 𝑏, 𝑐) ∈ ℝ3/
⎧{
⎨{⎩

𝑎 = 𝑧
𝑏 = 𝑥 − 𝑧
𝑐 = 𝑦 + 2𝑧

Le système précédent (d’inconnue (𝑎, 𝑏, 𝑐)) admet donc toujours une solution et on a montré
que ℝ3 = ker (𝑓) + F.

Finalement, ℝ3 = ker (𝑓) ⊕ F et F est un supplémentaire de ker (𝑓) dans ℝ3.

Lycée Jules Garnier F. PUCCI
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Vérifions enfin que F est isomorphe à Im (𝑓) : On sait que F = {(𝑥, 𝑦, 0), (𝑥, 𝑦) ∈ ℝ2}.

L’application 𝜑 ∶ F ⟶ ℝ2

(𝑥, 𝑦, 0) ⟼ (𝑥, 𝑦)
est alors clairement un isomorphisme de F sur

Im (𝑓) (= ℝ2).

Exercice 4 : Donner des exemples d’applications linéaires de ℝ2 dans ℝ2 vérifiant :
1. ker(𝑓) = Im(𝑓).
2. ker(𝑓) inclus strictement dans Im(𝑓).
3. Im(𝑓) inclus strictement dans ker(𝑓).

Correction :
1. Par exemple 𝑓(𝑥, 𝑦) = (0, 𝑥) alors ker 𝑓 = Im 𝑓 = {0} × ℝ = {(0, 𝑦) ∣ 𝑦 ∈ ℝ}.
2. Par exemple l’identité : 𝑓(𝑥, 𝑦) = (𝑥, 𝑦). En fait un petit exercice est de montrer que les seules

applications possibles sont les applications bijectives (c’est très particulier aux applications de ℝ2

dans ℝ2).
3. L’application nulle : 𝑓(𝑥, 𝑦) = (0, 0). Exercice : c’est la seule possible !

Exercice 5 : Déterminer une base de Im (𝑓) avec

𝑓 ∶ 𝕂𝑛[X] ⟶ 𝕂𝑛[X]

P ⟼ P′.

Même question si 𝑓 est définie sur 𝕂[X].

Exercice 6 : Montrer que les applications suivantes sont linéaires puis déterminer une base de leur
noyau et une base de leur image. Sont-elles injectives ? surjectives ?

1. 𝑓 ∶ (𝑥, 𝑦, 𝑧) ⟼ (𝑥 + 𝑦 + 𝑧, 𝑥 + 3𝑦 + 2𝑧, 3𝑥 + 𝑦 + 2𝑧).
2. 𝑔 ∶ (𝑥, 𝑦, 𝑧) ⟼ (2𝑥 − 𝑦 + 𝑧, 3𝑥 + 𝑦 − 𝑧, 𝑥 − 3𝑦 + 3𝑧, 2𝑥 + 4𝑦 − 4𝑧).
3. ℎ ∶ P ⟼ X (P′(X + 1) − P′(1)) de ℝ3[X] dans lui-même.

4. 𝑘 ∶ M ⟼ ( 1 3
3 9 ) M de M2(ℝ) dans lui-même.

Correction :

1. ∀ (𝑥, 𝑦, 𝑧) ∈ ℝ3, 𝑓(𝑥, 𝑦, 𝑧) = ⎛⎜⎜
⎝

1 1 1
1 3 2
3 1 2

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟
⎠

donc est clairement linéaire par linéarité à droite

du produit matriciel.

F. PUCCI Lycée Jules Garnier



4

A
pp

lic
at

io
ns

lin
éa

ire
s

Feuille d’exercices n𝑜27 Applications linéaires

ker (𝑓) = {(0, 0, 0)} donc 𝑓 est injective donc surjective donc bijective
d’après le théorème du rang. Une base de Im (𝑓) est donc, par exemple,

(𝑓(1, 0, 0), 𝑓(0, 1, 0), 𝑓(0, 0, 1)) = ⎛⎜⎜
⎝

⎛⎜⎜
⎝

1
1
3

⎞⎟⎟
⎠

, ⎛⎜⎜
⎝

1
3
1

⎞⎟⎟
⎠

, ⎛⎜⎜
⎝

1
2
2

⎞⎟⎟
⎠

⎞⎟⎟
⎠

.

2. ∀ (𝑥, 𝑦, 𝑧) ∈ ℝ3, 𝑔(𝑥, 𝑦, 𝑧) =
⎛⎜⎜⎜⎜⎜
⎝

2 −1 1
3 1 −1
1 −3 3
2 4 −4

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟
⎠

donc est clairement linéaire par linéarité à droite

du produit matriciel.

ker (𝑔) = {(0, 0, 0)} donc 𝑓 est injective et, d’après le théorème du rang, Im (𝑔) est de dimension 3.
L’application 𝑔 n’est donc pas surjective.

Pour obtenir une base de Im (𝑔), l’image d’une base de ℝ3, de trois vecteurs donc, suffira.

Par exemple, (𝑓(1, 0, 0), 𝑓(0, 1, 0), 𝑓(0, 0, 1)) =
⎛⎜⎜⎜⎜⎜
⎝

⎛⎜⎜⎜⎜⎜
⎝

2
3
1
2

⎞⎟⎟⎟⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

−1
1

−3
4

⎞⎟⎟⎟⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

1
−1
3

−4

⎞⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟
⎠

convient.

3. Soit 𝜆 ∈ ℝ et P, Q ∈∈ ℝ3[X]. Par linéarité de la dérivation et les lois de ℝ3[X],

ℎ(𝜆P + Q) = X((𝜆P + Q)′(X + 1) − (𝜆P + Q)′(1))

= 𝜆X(P′(X + 1) − P′(1)) + X(Q′(X + 1) − Q′(1))

= 𝜆ℎ(P) + ℎ(Q).

Donc ℎ est linéaire.

De plus, deg (X (P′(X + 1) − P′(1))) ⩽ 1 + deg(P) − 1 ⩽ 3 donc ∀ P ∈ ℝ3[X], ℎ(P) =∈ ℝ3[X] et
ℎ est un endomorphisme de ℝ3[X].

∀ P ∈ ℝ3[X], ℎ(P) = 0 ⟹ ∀ 𝑥 ∈ ℝ, P̃′(X + 1) = P̃′(1) par intégrité de ℝ3[X]. Donc P̃′ est
constante et P ∈ ℝ1[X]. La réciproque étant évidente, ker (ℎ) = vect (1, X) et ℎ n’est pas injective.

Considérons l’image de la base de ℝ3[X], (1, X − 1, (X − 1)2, (X − 1)3) de Taylor centrée en −1.

ℎ(1) = ℎ(X − 1) = 0, ℎ((X − 1)2) = 2X2, ℎ((X − 1)3) = 3X3.

D’après le théorème du rang, Im (ℎ) est de dimension 2. Il est clair que (X2, X3) en forme une base
et que ℎ n’est pas surjective.

4. La linéarité à droite du produit matriciel nous donne la linéarité de 𝑘

En l’absence d’outils plus sophistiqués, soit M = ⎛
⎝

𝑥 𝑥′

𝑦 𝑦′
⎞
⎠

∈ M2(ℝ).

Lycée Jules Garnier F. PUCCI
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Alors

⎛
⎝

1 3
3 9

⎞
⎠

⎛
⎝

𝑥 𝑥′

𝑦 𝑦′
⎞
⎠

= ⎛⎜
⎝

𝑥 + 3𝑦 𝑥′ + 3𝑦′

3𝑥 + 9𝑦 3𝑥′ + 9𝑦′
⎞⎟
⎠

= (𝑥 + 3𝑦) ⎛
⎝

1 0
3 0

⎞
⎠

+ (𝑥′ + 3𝑦′) ⎛
⎝

0 1
0 3

⎞
⎠

.

Donc Im (𝑘) ⊂ vect ⎛
⎝

⎛
⎝

1 0
3 0

⎞
⎠

, ⎛
⎝

0 1
0 3

⎞
⎠

⎞
⎠

.

Comme ⎛
⎝

1 0
3 0

⎞
⎠

= 𝑘 ⎛
⎝

⎛
⎝

1 0
0 0

⎞
⎠

⎞
⎠

et ⎛
⎝

0 1
0 3

⎞
⎠

= 𝑘 ⎛
⎝

⎛
⎝

0 1
0 0

⎞
⎠

⎞
⎠

, on a aussi

vect ⎛
⎝

⎛
⎝

1 0
3 0

⎞
⎠

, ⎛
⎝

0 1
0 3

⎞
⎠

⎞
⎠

⊂ Im (𝑘) et l’égalité.

En conclusion, rg (𝑘) = 2 et l’application n’est pas surjective dans M2(ℝ) de dimension 4.

D’après le théorème du rang, on sait maintenant que ker (𝑘) est de dimension 2 et que 𝑘 n’est pas
injective.

Pour trouver une base de ker (𝑘), le plus facile est d’en trouver deux vecteurs (des matrices) non
colinéaires.

Un petit calcul montre que 𝑘 ⎛
⎝

⎛
⎝

−3 0
1 0

⎞
⎠

⎞
⎠

= 𝑘 ⎛
⎝

⎛
⎝

0 −3
0 1

⎞
⎠

⎞
⎠

= ⎛
⎝

0 0
0 0

⎞
⎠

. Ces matrices sont

clairement libres dans M2(ℝ) ce qui suffit à conclure :

ker (𝑘) = vect ⎛
⎝

⎛
⎝

−3 0
1 0

⎞
⎠

, ⎛
⎝

0 −3
0 1

⎞
⎠

⎞
⎠

.

Exercice 7 :
1. Montrer que l’application (𝑥, 𝑦, 𝑧) ⟼ (𝑥 + 2𝑦, 4𝑥 − 𝑦 + 𝑧, 2𝑥 + 2𝑦 + 3𝑧) est un automorphisme

de ℝ3 et déterminer sa réciproque.
2. Proposer un exemple d’isomorphisme de M𝑛,𝑝(𝕂) sur L (𝕂𝑝, 𝕂𝑛).

Exercice 8 : On définit 𝑓, 𝑔 de ℝ[X] dans ℝ[X], par 𝑓(P) = P′ et 𝑔(P) = XP.

1. Montrer que f et g sont des endomorphismes de ℝ[X]
2. Montrer que 𝑓 est surjective et non injective.
3. Montrer que 𝑔 est injective et non surjective.

Correction :
1. Par linéarité de la dérivation et du produit des polynômes, 𝑓 et 𝑔 sont linéaires. Par définition de la

dérivation des polynômes et du produit de polynômes, ce sont des endomorphismes de ℝ[X]

F. PUCCI Lycée Jules Garnier
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2. Soit P = ∑
𝑘⩾0

𝑎𝑘X𝑘 un polynôme. Il est assez clair que Q = ∑
𝑘⩾0

𝑎𝑘
𝑘 + 1

X𝑘+1 ∈ 𝕂[X] est un antécédent

de P par 𝑓 qui est donc surjective.

Pour tous 𝑘 ∈ 𝕂∗ et P ∈ 𝕂[X], 𝑓(P) = 𝑓(P + 𝑘) donc 𝑓 n’est pas injective.
3. Comme ℝ[X] est intègre, XP = 0𝕂[X] ⟹ P = 0𝕂[X]. La réciproque étant évidente,

ker (𝑔) = {0𝕂[X]} et 𝑔 est injective.

Par construction Im (𝑔) est inclus dans les polynômes admettant 0 comme racine. Le polynôme
constant à 1 n’admet donc pas d’antécédent et 𝑔 n’est pas surjective.

Exercice 9 : On considère l’application 𝑓 de ℝ𝑛[X] dans ℝ, qui à tout polynôme P associe le réel

∫
1

0
P(𝑡) d𝑡.

1. Montrer que 𝑓 est une application linéaire.
2. Déterminer la dimension de son noyau, et une base de ce noyau.

II/ Rang d’une application linéaire

Exercice 10 : Dans ℝ3, discuter selon les valeurs du paramètre réel 𝑎 la dimension de vect (𝑢, 𝑣, 𝑤)
avec 𝑢 = (𝑎, 1, 1), 𝑣 = (1, 𝑎, 1) et 𝑤 = (1, 1, 𝑎).

Correction : Soit 𝑥 (𝛼 ; 𝛽 ; 𝛾) ∈ vect (𝑢, 𝑣, 𝑤). Il existe alors (𝑥1 ; 𝑥2 ; 𝑥3) ∈ ℝ3 tel que :

𝑥 = 𝑥1𝑢 + 𝑥2𝑣 + 𝑥3𝑤 ⟺
⎧{
⎨{⎩

𝛼 = 𝑥1𝑎 + 𝑥2 + 𝑥3
𝛽 = 𝑥1 + 𝑎𝑥2 + 𝑥3
𝛾 = 𝑥1 + 𝑥2 + 𝑎𝑥3

Si 𝑎 ≠ 0, alors :

⟺
⎧{
⎨{⎩

𝛼 = 𝑥1𝑎 + 𝑥2 + 𝑥3
𝑎𝛽 − 𝛼 = (𝑎2 − 1)𝑥2 + (𝑎 − 1)𝑥3
𝑎𝛾 − 𝛼 = + (𝑎 − 1)𝑥2 + (𝑎2 − 1)𝑥3

Si 𝑎 ≠ −1 alors :

⟺
⎧{
⎨{⎩

𝛼 = 𝑥1𝑎 + 𝑥2 + 𝑥3
𝑎𝛽 − 𝛼 = (𝑎2 − 1)𝑥2 + (𝑎 − 1)𝑥3

−𝑎𝛼 − 𝑎𝛽 + 𝑎(𝑎 + 1)𝛾 = = 𝑎(𝑎 − 1)(𝑎 + 2)𝑥3

En conclusion,
— si 𝑎 est différent de 0, 1 et −2, tout vecteur de ℝ3 est déterminer de manière unique : vect (𝑢, 𝑣, 𝑤)

est de rang 3.
— si 𝑎 = −2, le système est compatible si, et seulement si 𝛼 + 𝛽 + 𝛾 = 0 : vect (𝑢, 𝑣, 𝑤) est le plan

d’équation 𝑥 + 𝑦 + 𝑧 = 0 et de dimension 2.

Lycée Jules Garnier F. PUCCI
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— si 𝑎 = 1, alors 𝑥 = 𝑥1𝑢 + 𝑥2𝑣 + 𝑥3𝑤 ⟺ 𝛼 = 𝛽 = 𝛾 : c’est une droite de système d’équations

cartésiennes
⎧
⎨⎩

𝑥 = 𝑦
𝑥 = 𝑧

ou de paramétrisation vect ((1 ; 1 ; 1)) de dimension 1.

— si 𝑎 = 0, 𝑥 = 𝑥1𝑢+𝑥2𝑣+𝑥3𝑤 ⟺
⎧{
⎨{⎩

𝛼 = 𝑥2 + 𝑥3
𝛽 = 𝑥1 + 𝑥3
𝛾 = 𝑥1 + 𝑥2

⟺
⎧{
⎨{⎩

𝑥1 = −2𝛼 + 𝛽 + 2𝛾
𝑥2 = 𝛼 − 2𝛽 + 2𝛾

𝑥3 = 𝛼 + 𝛽 − 𝛾
2

Tout vecteur de ℝ3 est déterminé de manière unique : vect (𝑢, 𝑣, 𝑤) est de rang 3.

Exercice 11 : Soit 𝑓 un endomorphisme non nul de ℝ3 tel que 𝑓2 = 0.

Déterminer le rang de 𝑓.

Exercice 12 : Soit E un 𝕂-ev de dimension finie 𝑛.
1. Soient 𝑓, 𝑔 ∈ L (E) tels que 𝑓 ∘ 𝑔 = 0.

Montrer que rg (𝑓) + rg (𝑔) ⩽ 𝑛.
2. On ajoute l’hypothèse : 𝑓 + 𝑔 ∈ G 𝑙(E).

Montrer que rg (𝑓) + rg (𝑔) = 𝑛.

Exercice 13 : Soit 𝑓 : ℝ4 ⟼ ℝ3 définie par 𝑓((𝑥, 𝑦, 𝑧, 𝑡)) = (𝑥 + 𝑦 + 𝑧 + 2𝑡, 𝑦 − 𝑧 + 𝑡, 𝑥 − 𝑦 + 3𝑧).
1. Démontrer que 𝑓 est linéaire.
2. Démontrer que ker (𝑓) = vect ((1, 1, 0, −1), (−3, 0, 1, 1)).
3. ℬ = (𝑒1, 𝑒2, 𝑒3, 𝑒4) étant la base canonique de ℝ4, calculer le rang de (𝑓(𝑒1), 𝑓(𝑒2), 𝑓(𝑒3), 𝑓(𝑒4))

et déterminer une base de Im (𝑓).
4. Vérifier le théorème du rang.

Correction :
1. 𝑓 est linéaire : AQT !
2. Soit (𝑥, 𝑦, 𝑧, 𝑡) ∈ ℝ4.

(𝑥, 𝑦, 𝑧, 𝑡) ∈ ker (𝑓) ⟺ 𝑓((𝑥, 𝑦, 𝑧, 𝑡)) = (0, 0, 0)

⟺
⎧{
⎨{⎩

𝑥 + 𝑦 + 𝑧 + 2𝑡 = 0
𝑦 − 𝑧 + 𝑡 = 0

𝑥 − 𝑦 + 3𝑧 = 0
⟺

⎧{
⎨{⎩

𝑥 + 𝑦 + 𝑧 + 2𝑡 = 0
𝑦 − 𝑧 + 𝑡 = 0

−2𝑦 + 2𝑧 − 2𝑡 = 0 L3 ← L3 − L1

⟺
⎧
⎨⎩

𝑥 + 𝑦 + 𝑧 + 2𝑡 = 0
𝑦 − 𝑧 + 𝑡 = 0

⟺
⎧
⎨⎩

𝑥 + 2𝑡 = −𝑦 − 𝑧
𝑡 = −𝑦 + 𝑧

⟺
⎧
⎨⎩

𝑥 = 𝑦 − 2𝑧
𝑡 = −𝑦 + 𝑧

⟺ (𝑥, 𝑦, 𝑧, 𝑡) = (𝑦 − 3𝑧, 𝑦, 𝑧, −𝑦 + 𝑧)
⟺ (𝑥, 𝑦, 𝑧, 𝑡) ∈ vect ((1, 1, 0, −1), (−3, 0, 1, 1))

F. PUCCI Lycée Jules Garnier
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Donc
ker (𝑓) = vect ((1, 1, 0, −1), (−3, 0, 1, 1)) .

3. ℬ = (𝑒1, 𝑒2, 𝑒3, 𝑒4) : base canonique de ℝ4.

⎧{{
⎨{{
⎩

𝑓(𝑒1) = (1, 0, 1)
𝑓(𝑒2) = (1, 1, −1)
𝑓(𝑒3) = (1, −1, 3)
𝑓(𝑒4) = (2, 1, 0)

— On a 𝑓(𝑒4) = 𝑓(𝑒1) + 𝑓(𝑒2) d’où

rg (𝑓(𝑒1), 𝑓(𝑒2), 𝑓(𝑒3), 𝑓(𝑒4)) = rg (𝑓(𝑒1), 𝑓(𝑒2), 𝑓(𝑒3))

— On a 𝑓(𝑒3) = 2𝑓(𝑒1) − 𝑓(𝑒2) d’où

rg (𝑓(𝑒1), 𝑓(𝑒2), 𝑓(𝑒3)) = rg (𝑓(𝑒1), 𝑓(𝑒2))

— La famille (𝑓(𝑒1), 𝑓(𝑒2)) est libre donc

rg (𝑓(𝑒1), 𝑓(𝑒2)) = 2

rg (𝑓(𝑒1), 𝑓(𝑒2), 𝑓(𝑒3), 𝑓(𝑒4)) = 2.

Im (𝑓) = vect (𝑓(𝑒1), 𝑓(𝑒2), 𝑓(𝑒3), 𝑓(𝑒4))
= vect (𝑓(𝑒1), 𝑓(𝑒2), 𝑓(𝑒3))
= vect (𝑓(𝑒1), 𝑓(𝑒2))

La famille (𝑓(𝑒1), 𝑓(𝑒2)) engendre Im (𝑓).

Or, on a vu qu’elle était libre.

Donc, (𝑓(𝑒1), 𝑓(𝑒2)) est une base de Im (𝑓).

rg 𝑓 = 2.

La formule du rang est bien vérifiée :

⎧
⎨⎩

dim ker (𝑓) + rg 𝑓 = 2 + 2 = 4
dim ℝ4 = 4

Exercice 14 : Soit E un 𝕂-ev, et 𝑓, 𝑔 ∈ L (E).

On suppose E = ker (𝑓) + ker (𝑔) = Im (𝑓) + Im (𝑔).

Montrer que ces deux sommes sont directes.

Lycée Jules Garnier F. PUCCI
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Exercice 15 : Soit E un 𝕂-espace vectoriel de dimension finie 𝑛 et 𝑢 ∈ L (E).

À l’aide du théorème du rang, montrer que :

ker (𝑢) = ker (𝑢2) ⟺ Im (𝑢) = Im (𝑢2) ⟺ E = ker (𝑢) ⊕ Im (𝑢) .

Exercice 16 : Soit 𝑓 ∶ ℝ2 ⟶ ℝ2

(𝑥 ; 𝑦) ⟼ (𝑥 ; 2𝑥 − 𝑦)
Montrer que 𝑓 ∈ G 𝑙(ℝ2).

Exercice 17 : Dans le ℝ-ev ℂ, on considère 𝑓 ∈ Lℝ(ℂ) par 𝑓(1) = 1 + 𝑖 et 𝑓(𝑖) = 3 − 𝑖.

Montrer que 𝑓 est un automorphisme.

III/ Endomorphismes remarquables

Exercice 18 : Soit 𝑝 : ℝ2 → ℝ2 définie par 𝑝((𝑥, 𝑦)) = (4𝑥 − 6𝑦, 2𝑥 − 3𝑦).
1. Montrer que 𝑝 est linéaire.
2. Montrer que 𝑝 est un projecteur.
3. Déterminer une base de ker (𝑝) et de Im (𝑝).

Exercice 19 : Soit 𝑓 de ℝ3 dans ℝ3 définie par 𝑓(𝑥, 𝑦, 𝑧) = (𝑥
2

, 𝑦
2

, 0).

1. Montrer que 𝑓 est linéaire. Est-elle injective ?
2. Déterminer ker (𝑓) et Im (𝑓), puis montrer que ℝ3 = ker (𝑓) ⊕ Im (𝑓).
3. 𝑓 est-elle un projecteur ?

Exercice 20 : Soit E un 𝕂-ev et 𝑓 ∈ L (E).

Démontrer que 𝑓2 = I𝑑E ⟺ 1
2

(𝑓 + I𝑑E) est un projecteur.

Exercice 21 : Soient E un 𝕂-espace vectoriel et 𝑝 et 𝑞 deux projecteurs de E.

On suppose que 𝑝 et 𝑞 commutent. Montrer que 𝑝 ∘ 𝑞 est la projection de E sur Im (𝑝) ∩ Im (𝑞) de
direction ker (𝑝) + ker (𝑞).

F. PUCCI Lycée Jules Garnier
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Exercice 22 : Soient 𝑝 et 𝑞 deux projecteurs d’un ℂ-espace vectoriel E. Montrer que :

𝑝 + 𝑞 projecteur ⟺ 𝑝 ∘ 𝑞 = 𝑞 ∘ 𝑝 = 0 ⟺ Im (𝑝) ⊂ ker (𝑞) et Im (𝑞) ⊂ ker (𝑝).

Dans le cas où 𝑝 + 𝑞 est un projecteur, déterminer ker (𝑝 + 𝑞) et Im (𝑝 + 𝑞).

Correction : On montre la première équivalence :
⇒ : Si 𝑝 + 𝑞 est un projecteur alors l’égalité (𝑝 + 𝑞)2 = 𝑝 + 𝑞 fournit 𝑝 ∘ 𝑞 + 𝑞 ∘ 𝑝 = 0.

En composant par 𝑝 à droite et à gauche, on obtient 𝑝 ∘ 𝑞 ∘ 𝑝 + 𝑞 ∘ 𝑝 = 0 = 𝑝 ∘ 𝑞 + 𝑝 ∘ 𝑞 ∘ 𝑝 et donc
𝑝 ∘ 𝑞 = 𝑞 ∘ 𝑝.

Cette égalité jointe à l’égalité 𝑝 ∘ 𝑞 + 𝑞 ∘ 𝑝 = 0 fournit 𝑝 ∘ 𝑞 = 𝑞 ∘ 𝑝 = 0.
⇐ : Si 𝑝 ∘ 𝑞 = 𝑞 ∘ 𝑝 = 0, alors (𝑝 + 𝑞)2 = 𝑝2 + 𝑝 ∘ 𝑞 + 𝑞 ∘ 𝑝 + 𝑞2 = 𝑝 + 𝑞 et 𝑝 + 𝑞 est un projecteur.
Finalement, pour tous projecteurs 𝑝 et 𝑞, (𝑝 + 𝑞 projecteur ⟺ 𝑝 ∘ 𝑞 = 𝑞 ∘ 𝑝 = 0.

La seconde est relativement claire.

Dorénavant, 𝑝 + 𝑞 est un projecteur ou ce qui revient au même 𝑝 ∘ 𝑞 = 𝑞 ∘ 𝑝 = 0.

On a toujours ker (𝑝) ∩ ker (𝑞) ⊂ ker (𝑝 + 𝑞).

Réciproquement, pour 𝑥 ∈ E,

𝑥 ∈ ker (𝑝 + 𝑞) ⟹ (𝑝 + 𝑞)(𝑥) = 0 ⟹ 𝑝(𝑝(𝑥) + 𝑞(𝑥)) = 0 ⟹ 𝑝(𝑥) = 0,

et de même 𝑞(𝑥) = 0.

Ainsi, ker (𝑝 + 𝑞) ⊂ ker (𝑝) ∩ ker (𝑞) et donc ker (𝑝 + 𝑞) = ker (𝑝) ∩ ker (𝑞).

On a toujours Im (𝑝 + 𝑞) ⊂ Im (𝑝) + Im (𝑞).

Réciproquement, pour 𝑥 ∈ E,

𝑥 ∈ Im (𝑝) + Im (𝑞) ⟹ ∃(𝑥1, 𝑥2) ∈ E2/ 𝑥 = 𝑝(𝑥1) + 𝑞(𝑥2).

Mais alors, (𝑝+𝑞)(𝑥) = 𝑝2(𝑥1)+𝑝∘𝑞(𝑥1)+𝑞∘𝑝(𝑥2)+𝑞2(𝑥2) = 𝑝(𝑥1)+𝑞(𝑥2) = 𝑥 et donc 𝑥 ∈ Im (𝑝+𝑞).

Ainsi, Im (𝑝) + Im (𝑞) ⊂ Im (𝑝 + 𝑞) et donc Im (𝑝 + 𝑞) = Im (𝑝) + Im (𝑞).

En résumé, si 𝑝 et 𝑞 sont deux projecteurs tels que 𝑝 + 𝑞 soit un projecteur, alors

ker (𝑝 + 𝑞) = ker (𝑝) ∩ ker (𝑞) et Im (𝑝 + 𝑞) = Im (𝑝) + Im (𝑞) .

Exercice 23 : On considère l’espace ℱ (ℝ ; ℝ) des applications de ℝ dans ℝ.

À tout élément 𝑓 ∈ ℱ (ℝ ; ℝ), on associe l’élément T(𝑓) ∈ ℱ (ℝ ; ℝ) défini par :

∀ 𝑥 ∈ ℝ, T(𝑓)(𝑥) = 𝑓(−𝑥).

Montrer que T est une symétrie de ℱ (ℝ ; ℝ) et donner ses éléments caractéristiques.

Lycée Jules Garnier F. PUCCI
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Correction : T est clairement un endomorphisme de ℱ (ℝ ; ℝ).

De plus, pour tout 𝑓 ∈ ℱ (ℝ ; ℝ) :

∀ 𝑥 ∈ ℝ, (T ∘ T)(𝑓)(𝑥) = 𝑓( − (−𝑥)) = 𝑓(𝑥).

Donc T ∘ T = I𝑑ℱ(ℝ;ℝ) et T est la symétrie par rapport à 𝒫 = ker (T − I𝑑ℱ(ℝ;ℝ)) parallèlement à
ℐ = ker (T + I𝑑ℱ(ℝ;ℝ)).

Or, 𝑓 ∈ 𝒫 ⟺ ∀ 𝑥 ∈ ℝ, 𝑓(−𝑥) = 𝑓(𝑥) ⟺ 𝑓 est paire.

De même, 𝑓 ∈ ℐ ⟺ 𝑓 est impaire.

Ainsi, on retrouve de cette manière que ℱ (ℝ ; ℝ) = 𝒫 ⊕ ℐ.

Exercice 24 : Soit E un ℂ-ev et 𝑓 ∈ L (E) tel que 𝑓2 = −I𝑑E.

On pose F = {𝑥 ∈ E; 𝑓(𝑥) = 𝑖𝑥} et G = {𝑥 ∈ E; 𝑓(𝑥) = −𝑖𝑥}.
1. Démontrer que E = F ⊕ G.
2. Déterminer l’expression de 𝑓 en fonction des projecteurs 𝑝 et 𝑞 associés à la somme directe

précédente.

Correction :
1. AQT
2. 𝑓 = 𝑓 − 𝑝(𝑓) + 𝑓 − 𝑞(𝑓) en se rappelant que 𝑝 + 𝑞 = I𝑑E.

F. PUCCI Lycée Jules Garnier
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