Dimension finie

Nom: Prenom:	• • • •
Exercice 1 : Vrai ou faux	
1. Dans \mathbb{K}^4 , $ax + by + cz + dt = 0$ avec $(a, b, c, d) \neq (0, 0, 0, 0)$ est une équation définissant u sous-espace vectoriel de dimension 3	ın
2. Pour toutes matrices carrées d'ordre p, A et B et tout naturel $n, (AB)^n = A^nB^n$	
3. Toute famille génératrice d'un espace vectoriel de dimension finie a un cardinal supérieur o égal à toute famille libre.	ou

Exercice 2 : Montrer que dans $\mathbb{K}[X]$, la famille constituée par un polynôme P de degré n , ainsi que ses polynômes dérivés P', P'',, P ⁽ⁿ⁾ est libre.
Exercice 3 : Soient E un \mathbb{C} -espace vectoriel et f un endomorphisme de E tel que $f \circ f = -\mathrm{I} d_{\mathrm{E}}$. Soient $\mathrm{V} = \{x \in \mathrm{E}, f(x) = ix\}$ et $\mathrm{W} = \{x \in \mathrm{E}, f(x) = -ix\}$.
Montrer que V et W sont deux sous-espaces vectoriels supplémentaires dans E.

Lycée Jules Garnier F. PUCCI